
Breaking	the	Ledger	Security	Model
Mar	20,	2018

In	this	post,	I’m	going	to	discuss	a	vulnerability	I	discovered	in	Ledger	hardware	wallets.	The	vulnerability	arose	due	to
Ledger’s	use	of	a	custom	architecture	to	work	around	many	of	the	limitations	of	their	Secure	Element.

An	attacker	can	exploit	this	vulnerability	to	compromise	the	device	before	the	user	receives	it,	or	to	steal	private	keys	from
the	device	physically	or,	in	some	scenarios,	remotely.

Physical	access	before	setup	of	the	seed

Also	known	as	a	“supply	chain	attack”,	this	is	the	focus	of	this	article.	It	does	not	require	malware	on	the	target
computer,	nor	does	it	require	the	user	to	confirm	any	transactions.	Despite	claims	otherwise,	I	have	demonstrated
this	attack	on	a	real	Ledger	Nano	S.	Furthermore,	I	sent	the	source	code	to	Ledger	a	few	months	ago,	so	they	could
reproduce	it.

As	you	can	tell	from	the	video	above,	it	is	trivial	to	perform	a	supply	chain	attack	that	modifies	the	generated	recovery
seed.	Since	all	private	keys	are	derived	from	the	recovery	seed,	the	attacker	could	steal	any	funds	loaded	onto	the
device.

Physical	access	a er	setup

This	is	commonly	known	as	an	“Evil	Maid	attack”.	This	attack	would	allow	you	to	extract	the	PIN,	recovery	seed	and
any	BIP-39	passphrases	used,	provided	the	device	is	used	at	least	once	a er	you	attack	it.

As	before,	this	does	not	require	malware	on	the	computer,	nor	does	it	require	the	user	to	confirm	any	transactions.	It
simply	requires	an	attacker	to	install	a	custom	MCU	firmware	that	can	exfiltrate	the	private	keys	without	the	user’s
knowledge,	next	time	they	use	it.

Malware	(with	a	hint	of	social	engineering)

This	attack	would	require	the	user	to	update	the	MCU	firmware	on	an	infected	computer.	This	could	be	achieved	by
displaying	an	error	message	that	asks	the	user	to	reconnect	the	device	with	the	le 	button	held	down	(to	enter	the
MCU	bootloader).	Then	the	malware	can	update	the	MCU	with	malicious	code,	allowing	the	malware	to	take	control

00:00 -00:41



of	the	trusted	display	and	confirmation	buttons	on	the	device.

This	attack	becomes	incredibly	lucrative	if	used	when	a	legitimate	firmware	update	is	released,	as	was	the	case	two
weeks	ago.

Proof	of	Concept
If	you	want	to	miss	out	on	the	fun	of	building	an	exploit	yourself,	you	can	find	my	proof-of-concept	on	GitHub.

If	you	follow	the	instructions	there	and	install	it	on	a	Ledger	Nano	S	running	firmware	1.3.1	or	below,	you	will	be	able	to
reenact	the	attack	in	the	video	above.	However,	because	this	is	for	educational	purposes	only,	I	have	deliberately	made
the	attack	slightly	less	reliable.

A	Note	on	Responsible	Disclosure
Before	I	get	to	the	details	of	the	vulnerability,	I	would	like	to	make	it	clear	that	I	have	not	been	paid	a	bounty	by	Ledger
because	their	responsible	disclosure	agreement	would	have	prevented	me	from	publishing	this	technical	report.

I	chose	to	publish	this	report	in	lieu	of	receiving	a	bounty	from	Ledger,	mainly	because	Eric	Larchevêque,	Ledger’s	CEO,
made	some	comments	on	Reddit	which	were	fraught	with	technical	inaccuracy.	As	a	result	of	this	I	became	concerned	that
this	vulnerability	would	not	be	properly	explained	to	customers.

I	discuss	my	interactions	with	Ledger	at	the	end	of	the	article.

Background	on	Hardware	Wallets
Cryptocurrencies,	such	as	Bitcoin,	use	public	key	cryptography	to	protect	funds.	You	can	only	spend	the	funds	if	you	have
the	private	key.

This	creates	an	issue	for	the	user	as	to	how	they	should	secure	their	private	key.	Humans	are	notoriously	terrible	at
securing	secrets	and	devices;	even	security	experts	are	not	infallible.

To	solve	this	problem,	a	class	of	devices	called	“hardware	wallets”	have	been	invented.	As	the	name	suggests,	these	are
hardware	devices	that	store	users’	private	keys	to	protect	against	malware.	Many	of	these	devices	connect	to	a	PC	via	a
USB	port,	but	do	not	reveal	the	private	keys	to	the	PC,	much	like	a	hardware	security	module	(HSM).

However,	acquiring	the	private	keys	is	not	the	only	way	an	attacker	can	steal	your	beloved	Bitcoin.	An	attacker	who
compromises	such	a	device	could	simply	change	the	recipient	of	the	transaction	and	the	amount	being	spent!	If	this	is
done	surreptitiously,	many	users	will	be	unaware	of	this	attack	until	it’s	far	too	late	to	recover	the	funds.

Therefore,	any	useable	hardware	wallet	really	needs	the	following	features,	which	differentiate	it	from	a	dumb	HSM

A	trusted	display	for	visual	verification	of	the	transaction	information
On-device	buttons,	in	order	to	confirm	or	deny	signing	transactions

Hardware	wallets	need	to	protect	against	a	wide	variety	of	attacks,	including:

Remote	attacks	(when	an	attacker	can	steal	your	private	keys	through	malware	on	your	computer)
Supply	chain	attacks	(when	an	attacker	can	modify	the	device	to	do	Bad	Things™	before	you	receive	it)
Unauthorized	physical	access	(when	an	attacker	can	compromise	the	device	if	they	obtain	physical	access)

We	can	further	divide	the	last	attack	vector	into	two	types:	the 	and	“Evil	Maid	attacks”.	If	an	attacker	can	steal	the	device,
they	have	a	longer	duration	of	time	to	perform	an	attack,	and	possibly	access	to	expensive	lab	equipment.	However,	they
may	be	thwarted	by	you	realizing	your	device	is	missing,	and	moving	your	funds	to	new	private	keys.

https://github.com/saleemrashid/ledger-mcu-backdoor


Security	features,	such	as	duress	passphrases	which	aren’t	stored	on	the	device,	can	prevent	the	attacker	from	stealing
your	funds	in	this	scenario	because	the	device	simply	does	not	contain	the	information	necessary	to	recover	the	private
keys.

On	the	other	hand,	with	an	“Evil	Maid	attack”,	the	attacker	might	have	a	limited	time	to	perform	the	attack,	and	won’t	have
an	expensive	lab	at	their	disposal.	These	attacks	can	be	far	more	dangerous	due	to	the	wide	variety	of	scenarios	they	can
be	employed	in:

As	the	name	suggests,	an	“evil	maid”	could	compromise	your	device	while	they	clean	your	hotel	room
Your	device	could	be	taken	from	you	for	a	short	time	as	you	pass	through	airport	security
You	might	entrust	your	device	to	a	relative	or	lawyer

In	this	disclosure,	we	will	focus	primarily	on	the	case	of	supply	chain	attacks.	That	is:	whether	or	not	you	can	trust	your
hardware	wallet	when	you	purchase	it	from	a	reseller	or	third	party.	But,	as	I	explain	briefly	at	the	beginning	of	this
article,	the	methods	described	here	can	be	applied	to	the	other	two	attack	vectors.

Breaking	The	Architecture
In	September	2014,	Ledger	released	the	HW.1.	This	wallet	was	based	on	the	ST23YT66,	a	smartcard	with	USB	support.
Unfortunately,	this	design	had	severe	limitations:	there	was	no	trusted	display	or	buttons.	This	made	the	wallet	dangerous
to	use.

Fast	forward	to	July	2016:	Ledger	announced	a	new	device	called	the	Nano	S.	Based	on	the	ST31H320	Secure	Element,	the
new	product	included	confirmation	buttons	and	a	trusted	display,	along	with	a	USB	connection.

In	November	2017,	I	decided	to	take	a	close	look	at	the	security	of	the	Nano	S.

While	I	didn’t	get	time	to	take	a	look	at	the	newer	Ledger	Blue,	it	functions	identically	to	the	Nano	S.	At	the	time	of
writing,	no	firmware	update	has	been	released	to	fix	the	vulnerability	in	the	Ledger	Blue.

Dual-Chip	Architecture

While	there	is	no	public	datasheet	available	for	the	ST31H320,	a	quick	look	at	the	data	brief	shows	that	this	Secure
Element	does	not	support	displays!	In	fact,	it	doesn’t	even	support	USB.	The	only	interface	it	supports	is	a	low-throughput
UART.

“What	sort	of	witchcra 	is	this!?”,	I	hear	you	cry.

As	it	happens,	Ledger	developed	a	new	architecture	to	deal	with	this	issue.	The	Nano	S	adds	a	second,	non-secure
microcontroller	(STM32F042K6)	which	acts	as	a	proxy	for	the	Secure	Element.	This	processor	drives	the	display,	buttons,
and	USB	interface.	It	interfaces	with	the	Secure	Element,	which	stores	the	actual	private	keys.

From	this	point	onwards,	we’ll	refer	to	the	ST31	Secure	Element	as	the	SE,	and	the	STM32	microcontroller	as	the	MCU.	A
diagram	of	the	architecture	looks	like	this:

http://www.st.com/en/secure-mcus/st31h320.html
http://www.st.com/resource/en/data_brief/st31h320.pdf
http://www.st.com/en/microcontrollers/stm32f042k6.html


TL;DR:	The	SE	can	only	communicate	directly	with	the	MCU.	However,	the	MCU	can	communicate	with	peripherals,	on
behalf	of	the	SE.

An	important	feature	of	the	Secure	Element	is	that	we	can	perform	cryptographic	attestation	to	determine	that	it	is
running	genuine	Ledger	firmware.	This	is	actually	a	selling	point	of	the	Ledger	design:	in	fact,	Ledger	argues	that	this
security	feature	is	so	powerful	that	Ledger	wallets	do	not	require	tamper-resistant	packaging	(archive.is	/	archive.org),	as
described	in	the	leaflet	shipped	with	all	devices.

https://www.ledgerwallet.com/genuine
http://archive.is/8XS2o
https://web.archive.org/web/20180319181257/https://www.ledger.fr/2015/03/27/how-to-protect-hardware-wallets-against-tampering/


Ledger’s	CTO	even	goes	as	far	as	to	tell	users	that	it	is	completely	safe	to	purchase	from	eBay	(archive.is	/	archive.org).

This	brings	us	to	the	key	problem.	While	the	so ware	on	the	SE	can	be	attested	to,	the	MCU	is	a	non-secure	chip	and	(as	we
show	below)	its	firmware	can	be	replaced	by	an	attacker.

And	herein	lies	the	problem:	to	achieve	Ledger’s	security	guarantees,	the	chain	of	trust	must	be	anchored	in	the	SE.	This
means	that	the	SE	needs	to	verify	the	firmware	on	the	MCU.

Hardware	Tampering

While	I	will	focus	on	so ware	tampering	in	this	article,	it’s	important	to	note	that,	in	the	absence	of	a	so ware
vulnerability,	you	could	still	compromise	the	device	by	tampering	with	hardware.

It	is	incredibly	important	to	note	that,	for	these	devices	to	be	secure	at	all,	you	must	completely	verify	the	physical
hardware.

Since	neither	the	packaging	nor	the	actual	device	are	tamper-evident,	it	is	trivial	for	an	attacker	to	modify	the	device.	I
cannot	repeat	this	enough:	if	you	do	not	verify	the	physical	hardware,	it	is	game	over.

Ledger	provides	instructions	to	do	this,	but	I	will	note	two	issues	with	them.

1.	 The	pictures	are	of	varying	quality.	Ledger	needs	to	provide	high	resolution	images	that	display	every	component
clearly.

2.	 The	reverse	of	the	device	is	not	displayed	at	all!

https://twitter.com/BTChip/status/949679898012078082
http://archive.is/R8O3F
https://web.archive.org/web/20180319180844/https:/twitter.com/BTChip/status/949679898012078082
https://support.ledgerwallet.com/hc/en-us/articles/115005321449-How-to-verify-the-security-integrity-of-my-Nano-S-


It	is	essential	that	you	verify	the	back	of	the	device,	especially	since	this	is	where	the	JTAG	header	(a	debugging
interface)	for	the	MCU	resides.

Even	if	these	two	issues	are	resolved,	I	would	question	how	expensive	it	is	to	have	one	of	the	MCUs	with	additional	flash
memory,	but	identical	pinout,	to	be	re-labelled	as	an	STM32F042K6.

Nevertheless,	while	it	is	important	to	touch	on	this	topic,	hardware	tampering	is	not	required	for	the	attack	I	will	describe
in	this	article.

Verifying	MCU	Firmware

Let’s	assume	that	you	have	meticulously	checked	the	hardware	and	it	is	definitely	unmodified.	What	happens	if	the
attacker	simply	changes	the	MCU’s	firmware?

Ledger	considered	this	attack	and,	to	prevent	this,	the	MCU	firmware	is	verified	by	the	SE.

But	it	turns	out	that	verifying	the	firmware	on	a	non-secure	processor	is	not	so	simple.	The	SE	is	nothing	more	than	a
glorified	smart	card,	which	means	that	the	only	method	of	communication	with	the	MCU	is	via	a	low-throughput	UART.
With	no	direct	access	to	the	RAM	or	flash	on	the	MCU,	how	can	the	SE	verify	its	firmware?

Ledger’s	approach	was	for	the	SE	to	ask	the	MCU	to	pass	over	the	entire	contents	of	its	flash	memory,	as	detailed	below.

At	first	glance	this	seems	problematic.	Basically,	we	are	asking	a	(possibly	compromised)	MCU	to	prove	that	it’s	running
the	official	Ledger	firmware.	But	if	the	MCU	is	compromised,	what	stops	it	from	sending	over	different	code	–	code	that	it’s
not	actually	running?	This	is	the	challenge	that	Ledger	attempted	to	tackle.

The	theory	adopted	by	Ledger	is	based	on	the	fact	that	the	MCU	has	a	relatively	limited	amount	of	flash.	To	run	malicious
firmware,	an	attacker	would	also	need	to	store	the	official	Ledger	firmware,	so	that	it	can	satisfy	the	SE.	Thus	Ledger’s
approach	was	to	make	this	difficult	given	the	amount	of	flash	available.

Specifically,	by	verifying	the	entire	flash	(and	filling	empty	areas	with	random	data),	Ledger	attempted	to	make	it	difficult
to	store	malicious	code	on	the	MCU	and	also	pass	the	MCU	verification.

This	is	a	remarkable	idea,	and	perhaps	it’s	possible	to	get	it	right.	However,	I	was	completely	unconvinced	by	this	solution.

Mode	of	Attack



While	there	are	a	few	obvious	methods	to	attack	this	design,	such	as	supplying	the	malicious	code	via	USB	from	an
attached	PC,	it’s	much	more	fun	to	attempt	a	self-contained	exploit	(such	as	one	that	could	be	employed	in	a	supply	chain
attack).

The	method	I	chose	was	to	“compress”	the	code.	To	use	a	compression	algorithm	such	as	DEFLATE	or	LZMA	would	be
impossible	due	to	the	trade-offs	between	execution	time,	memory	usage	and	code	size.	A	user	might	notice	if	it	took
twenty	seconds	to	start	up	their	wallet!

Not	to	mention,	while	there	were	promising	results	compressing	the	entire	flash,	that	was	not	the	case	for	only	the	MCU
firmware	–	and	I	did	not	want	to	replace	the	MCU	bootloader,	which	is	also	present	in	flash.	This	is	because	there	are	two
methods	to	install	new	firmware	on	the	device:

1.	 Using	the	JTAG,	a	debugging	interface	used	by	embedded	firmware	developers	to,	amongst	other	things,	upload	new
firmware.

2.	 Using	the	bootloader,	which	is	the	method	used	by	Ledger	users	to	install	firmware	updates.	You	can	find	the	Python
tool	provided	by	Ledger	to	do	this	on	GitHub.

I	was	using	this	method	because	I	don’t	enjoy	soldering	things.	If	I	made	a	mistake	while	flashing	the	new	bootloader,
this	method	would	stop	working	and	the	device	would	be	bricked	unless	I	used	the	JTAG	interface.

Therefore,	replacing	the	bootloader	isn’t	an	option	and	we	have	to	rule	out	compression.

But	there’s	another	approach.	When	you	compile	a	C	program,	the	toolchain	(the	suite	of	so ware	that	compiles
programs)	will	perform	a	number	of	magic	tricks	to	make	everything	work.	For	example,	many	processors	don’t	have
instructions	to	divide	very	large	numbers.	The	compiler	works	around	this	by	inserting	a	so ware	implementation	of	the
division	operation.	Another	example	is	when	you	declare	initial	values	for	variables	defined	in	functions.	When	the
function	is	called,	the	compiler	will	insert	extra	code	at	the	beginning	to	copy	this	data	onto	the	stack.

The	extra	functions	the	compiler	inserts	to	perform	these	tasks	are	called	“compiler	intrinsics”.	Since	the	MCU	has	both	a
bootloader	and	firmware,	and	these	are	completely	separate	programs,	these	intrinsics	will	appear	twice	on	the	flash
(once	in	each	program).

The	upshot	of	this	is	that	we	can	insert	our	malicious	routines	in	place	of	one	redundant	copy	of	the	compiler	intriniscs
routines	(specifically,	the	copy	in	the	firmware).	This	leaves	us	with	an	intact	copy	of	that	code	in	the	bootloader.

Because	the	intrinsic	in	the	bootloader	is	identical	to	that	in	the	firmware,	when	the	SE	asks	the	MCU	for	its	flash	contents,
we	can	“piece	together”	a	correct	image	by	snipping	out	the	malicious	code	and	instead	sending	it	the	code	from	the
bootloader.	When	the	firmware	needs	to	use	the	intrinsic,	we	can	jump	to	the	intrinsic	in	the	bootloader	instead.

If	you’re	playing	along	at	home,	a er	building	the	bootloader	and	firmware	from	source	code,	you	can	use	this	command
to	find	symbols	to	target

nm	-S	--size-sort	-t	d	bin/token	|	grep	-i	"	t	"

This	command	gave	me	a	few	interesting	symbols	that	were	identical	in	both	the	bootloader	and	firmware.	No	surprise,	all
three	are	compiler	intrinsics.

134228637	00000124	T	memcpy
134228761	00000140	T	memset
134228357	00000266	T	__udivsi3

To	actually	use	the	malicious	code	we	have	hidden,	we	will	have	to	hook	other	functions.	We	do	this	by	inserting	branches
to	our	payload	in	the	functions	we	want	to	target.	We	need	to	hook	the	function	that	sends	the	flash	contents	to	the	SE,	in
order	to	send	the	bootloader	function	instead	of	our	malicious	code.

https://github.com/LedgerHQ/blue-loader-python/blob/9914b3746a3d784a0d7ca118096ddd383cb66141/ledgerblue/loadMCU.py
https://github.com/LedgerHQ/nanos-nonsecure-firmware


I	also	chose	to	hook	the	function	that	draws	to	the	screen.	This	allows	us	to	do	a	variety	of	fun	and	exciting	tricks.	Anything
from	changing	displayed	Bitcoin	addresses	and	keylogging	PINs	to,	as	I	will	explain	shortly,	backdooring	the	private	key
generation	is	fair	game!

With	these	two	hooks	and	 __udivsi3 	as	our	attack	vector,	our	exploit	looks	a	bit	like	this.

This	approach	frees	up	an	incredible	258	bytes	of	payload!	Well,	we’re	definitely	going	to	have	to	optimize	for	size,	even	if
we	throw	 memcpy 	and	 memset 	into	the	mix.

Making	an	Exploit
Our	payload	needs	two	components:

1.	 Code	to	modify	the	flash	contents	being	sent	to	the	SE,	to	trick	the	verification	procedure
2.	 An	attack	such	as	a	keylogger	or	key	generation	backdoor

I	don’t	know	about	you,	but	backdoors	seem	like	more	fun	to	me.

Our	exploit	doesn’t	allow	us	to	compromise	the	SE,	so	how	can	we	add	a	backdoor?

Ledger’s	SE	firmware	has	a	user	interface	application	which	is	in	charge	of	the	dashboard	(and	Settings).	However,	it	is	also
used	for	the	onboarding	process	(where	the	recovery	seed	is	generated).

If	we	can	modify	the	user	interface,	we	can	change	the	recovery	seed	that	is	generated	during	the	onboarding	process.
This	is	quite	easy	since	the	user	interface	is	open	source	and	Ledger	allows	you	(by	design!)	to	install	a	modified	UX
application.

Under	normal	circumstances,	the	device	would	display	a	warning	that	the	“User	interface	is	not	genuine”,	which	would	be
a	red	flag	for	any	attentive	user.

But	recall	that	I	promised	that	I	would	explain	how	controlling	the	display	can	backdoor	the	key	generation?	The	reason
this	attack	works	is	that	we	can	simply	hide	the	non-genuine	UX	warning.

For	this	demonstration,	we’re	not	going	to	do	anything	sophisticated	that	a	real	attacker	would	do,	such	as	generating	a
random-looking,	yet	entirely	predictable,	recovery	seed.

We’re	going	to	do	something	much	more	obvious.

diff	--git	a/src/bolos_ux_onboarding_3_new.c	b/src/bolos_ux_onboarding_3_new.c
index	ce1849c..b950ae7	100644
---	a/src/bolos_ux_onboarding_3_new.c
+++	b/src/bolos_ux_onboarding_3_new.c
@@	-395,7	+395,7	@@	void	screen_onboarding_3_new_init(void)	{

https://github.com/LedgerHQ/nanos-ui


	#else

					G_bolos_ux_context.onboarding_kind	=	BOLOS_UX_ONBOARDING_NEW_24;
-				cx_rng((unsigned	char	*)G_bolos_ux_context.string_buffer,	32);
+				os_memset(G_bolos_ux_context.string_buffer,	0,	32);
					G_bolos_ux_context.words_buffer_length	=	bolos_ux_mnemonic_from_data(
									(unsigned	char	*)G_bolos_ux_context.string_buffer,	32,
									(unsigned	char	*)G_bolos_ux_context.words_buffer,

If	you’re	well-versed	in	C,	you’ll	note	that	I’m	replacing	a	syscall	to	the	random	number	generator	with	a	function	call	that
sets	all	the	entropy	to	zero.	As	you	can	see	in	the	video	at	the	start,	it	generates	a	recovery	seed	where	the	first	23	words
are	 abandon 	(the	last	word	is	different	because	it	is	a	checksum).

Since	the	private	keys	are	derived	from	the	recovery	seed,	if	you	control	the	recovery	seed,	you	control	all	the	Bitcoin
addresses	generated	by	the	device.

If	we	put	it	all	together,	we	get	the	following	attack	which	I	think	is	really	neat.

Of	course,	since	the	SE	believes	the	MCU	is	running	genuine	firmware,	attestation	still	succeeds.	And,	as	I	mentioned
earlier,	no	hardware	tampering	was	required,	which	defeats	Ledger’s	security	integrity	verification.



Since	the	attacker	controls	the	trusted	display	and	hardware	buttons,	it	is	astonishingly	difficult	to	detect	and	remove	a
well-written	exploit	from	the	device.

Fixing	the	Attack
The	problem	with	an	architectural	vulnerability	like	this	is	that	it	is	challenging	to	fix	without	changing	the	architecture.

Ledger	has	employed	multiple	mitigations	to	try	and	prevent	an	attacker	from	exploiting	this	vulnerability.

First	of	all,	the	MCU	firmware	has	been	optimized	and	rearranged.	Specifically,	the	firmware	calls	into	functions	in	the
bootloader	instead	of	duplicating	the	functions.	While	this	prevents	this	particular	mode	of	attack,	it’s	important	to	be
aware	that	there	are	other,	more	“creative”	methods	of	attack	that	I	know	of,	and	probably	some	that	I	don’t	know	of.

Secondly,	the	SE	now	times	the	MCU	when	it	asks	it	to	send	the	flash	contents.	This	is	designed	to	prevent	the	use	of
compression	algorithms.	It	is	also	supposed	to	prevent	code	being	supplied	by	the	computer	over	USB.	I’m	not	sure	how
well	it	succeeds	in	doing	the	latter,	due	to	the	fact	that	the	code	can	be	kept	in	RAM.

However,	it’s	of	note	that	the	SE	runs	at	up	to	28	MHz	yet	the	“adversary”	(the	MCU)	runs	at	up	to	80	MHz!	This	throws	into
question	whether	a	slower	chip	can	accurately	time	a	faster	chip	to	prevent	it	from	doing	extra	things,	especially	given	the
slow	UART	communication.

Ledger	refused	to	send	me	a	release	candidate,	so	I	haven’t	had	an	opportunity	to	verify	how	well	these	mitigations
resolve	the	issue.	But	these	raise	an	important	question.

Is	it	truly	possible	to	use	a	combination	of	timing	and	“difficult	to	compress”	firmware	to	achieve	security	in	this
model?

Building	secure	systems	using	this	model	seems	like	an	incredibly	exciting	research	proposition	and	I	think	it’s	interesting
to	see	companies	like	Ledger	pushing	the	envelope	on	this.

Interaction	with	Ledger
Prior	to	the	scheduled	disclosure	of	this	vulnerability,	I	had	some	interactions	with	the	CEO	of	Ledger.	You	can	find	an
archived	copy	of	his	main	comment	on	archive.is	and	archive.org,	in	case	it	disappears	for	any	reason.

In	these	comments,	the	CEO	disputes	that	these	attacks	are	critical.	Some	of	Ledger’s	comments	are	subjective,	and
others	are	more	factual.	Below	I	discuss	some	of	these	comments.

The	first	claim	I	would	like	to	address	is	that	the	vulnerability	requires	a	set	of	incredibly	unlikely	conditions.

The	vulnerability	reported	by	Saleem	requires	physical	access	to	the	device	BEFORE	setup	of	the	seed,	installing	a	custom
version	of	the	MCU	firmware,	installing	a	malware	on	the	target’s	computer	and	have	him	confirm	a	very	specific
transaction.

I	am	puzzled	as	to	where	this	claim	could	have	originated	from.	From	later	contact	with	Ledger,	I	was	informed	that	the
CEO	had	not	at	all	been	briefed	on	the	security	vulnerability	when	they	made	these	comments	on	Reddit.

As	I	stated	at	the	beginning	of	the	article,	there	are	three	methods	to	exploit	this	vulnerability,	none	of	which	require
conditions	as	unlikely	as	those.

The	malware	attack	vector	I	mentioned	earlier	leads	nicely	onto	the	next	issue	I	have	with	Larchevêque’s	comment.

Saleem	got	visibly	upset	when	we	didn’t	communicate	as	“critical	security	update”	and	decided	to	share	his	opinion	on	the
subject.

http://archive.is/qLmV4
https://web.archive.org/web/20180307203051/https://www.reddit.com/r/ledgerwallet/comments/82fndi/psa_dont_panic_but_assume_the_device_is/dv9wnlb/?context=3


When	you	fix	a	critical	security	issue,	you	can	take	one	of	two	routes.

Completely	conceal	the	security	fix

This	is	an	effective	method	to	avoid	drawing	the	attention	of	black	hats	(if	your	product	is	completely	closed	source,
which	is	the	case	for	Ledger).

This	has	the	downside	that	most	users	will	avoid	updating,	especially	if	the	process	is	very	painful	to	do	(as	it	was	in
this	case).

Alert	users	of	a	critical	security	issue	and	force	an	update

This	is	commonly	used	for	open	source	products	or	when	the	vendor	suspects	a	security	vulnerability	is	being	used	in
the	wild.

However,	this	has	the	downside	that	it	alerts	black	hats	of	the	presence	of	a	vulnerability.	Therefore,	it	is	essential	that
users	update	immediately	to	gain	the	“first	mover”	advantage	over	a	potential	attacker.

Ledger	chose	a	flawed	method,	which	takes	the	worst	aspects	of	both	of	these	approaches.	By	drawing	attention	to	the
security	fixes	in	their	firmware	update,	while	not	alerting	users	to	update,	you	lose	the	“first	mover”	advantage.

This	gives	black	hats	sufficient	time	to	determine	how	to	exploit	the	vulnerability,	putting	all	users	at	risk	of	the	malware
attack	vector.

My	concerns	were	proven	correct,	as	I	was	contacted	by	multiple	independent	white	hats	who	had	determined	the	issue
purely	from	Ledger’s	firmware	update	instructions.

Disclosure	Timeline
11	Nov	2017:	Officially	reported	vulnerability	to	Nicolas	Bacca,	Ledger	CTO.	Vulnerability	determined	to	be
implausible.

14	Nov	2017:	Demonstrated	practical	supply	chain	attack	with	modified	MCU	firmware	and	user	interface.	Sent	source
code	to	Bacca.

30	Dec	2017:	Bricked	the	Ledger	Nano	S	by	downgrading	the	firmware	to	an	unsupported	version.	Press	F	to	pay
respects.

06	Mar	2018:	Ledger	released	firmware	update	for	Ledger	Nano	S.

20	Mar	2018:	Write-up	and	proof-of-concept	code	released.

Firmware	update	for	Ledger	Blue	unreleased	at	time	of	writing.

Acknowledgements
I	would	like	to	thank	Josh	Harvey	for	providing	me	with	a	Ledger	Nano	S,	so	I	could	turn	my	theoretical	attack	into	a
practical	exploit.

I	would	also	like	to	thank	Matthew	Green,	Kenn	White	and	Josh	Harvey	for	your	invaluable	help	in	editing	this	article.

https://twitter.com/BTChip
https://twitter.com/joshmh
https://twitter.com/matthew_d_green
https://twitter.com/kennwhite

