Earlier this month I spoke at a cybersecurity conference in Albany, N.Y. alongside Tony Sager, senior vice president and chief evangelist at the Center for Internet Security and a former bug hunter at the U.S. National Security Agency. We talked at length about many issues, including supply chain security, and I asked Sager whether he’d heard anything about rumors that Supermicro — a high tech firm in San Jose, Calif. — had allegedly inserted hardware backdoors in technology sold to a number of American companies.
The event Sager and I spoke at was prior to the publication of Bloomberg Businessweek‘s controversial story alleging that Supermicro had duped almost 30 companies into buying backdoored hardware. Sager said he hadn’t heard anything about Supermicro specifically, but we chatted at length about the challenges of policing the technology supply chain.
Below are some excerpts from our conversation. I learned quite bit, and I hope you will, too.
Brian Krebs (BK): Do you think Uncle Sam spends enough time focusing on the supply chain security problem? It seems like a pretty big threat, but also one that is really hard to counter.
Tony Sager (TS): The federal government has been worrying about this kind of problem for decades. In the 70s and 80s, the government was more dominant in the technology industry and didn’t have this massive internationalization of the technology supply chain.
But even then there were people who saw where this was all going, and there were some pretty big government programs to look into it.
BK: Right, the Trusted Foundry program I guess is a good example.
TS: Exactly. That was an attempt to help support a U.S.-based technology industry so that we had an indigenous place to work with, and where we have only cleared people and total control over the processes and parts.
BK: Why do you think more companies aren’t insisting on producing stuff through code and hardware foundries here in the U.S.?
TS: Like a lot of things in security, the economics always win. And eventually the cost differential for offshoring parts and labor overwhelmed attempts at managing that challenge.
BK: But certainly there are some areas of computer hardware and network design where you absolutely must have far greater integrity assurance?
TS: Right, and this is how they approach things at Sandia National Laboratories [one of three national nuclear security research and development laboratories]. One of the things they’ve looked at is this whole business of whether someone might sneak something into the design of a nuclear weapon.
The basic design principle has been to assume that one person in the process may have been subverted somehow, and the whole design philosophy is built around making sure that no one person gets to sign off on what goes into a particular process, and that there is never unobserved control over any one aspect of the system. So, there are a lot of technical and procedural controls there.
But the bottom line is that doing this is really much harder [for non-nuclear electronic components] because of all the offshoring now of electronic parts, as well as the software that runs on top of that hardware.
BK: So is the government basically only interested in supply chain security so long as it affects stuff they want to buy and use?
TS: The government still has regular meetings on supply chain risk management, but there are no easy answers to this problem. The technical ability to detect something wrong has been outpaced by the ability to do something about it.
BK: Wait…what?
TS: Suppose a nation state dominates a piece of technology and in theory could plant something inside of it. The attacker in this case has a risk model, too. Yes, he could put something in the circuitry or design, but his risk of exposure also goes up.
Could I as an attacker control components that go into certain designs or products? Sure, but it’s often not very clear what the target is for that product, or how you will guarantee it gets used by your target. And there are still a limited set of bad guys who can pull that stuff off. In the past, it’s been much more lucrative for the attacker to attack the supply chain on the distribution side, to go after targeted machines in targeted markets to lessen the exposure of this activity.
BK: So targeting your attack becomes problematic if you’re not really limiting the scope of targets that get hit with compromised hardware.
TS: Yes, you can put something into everything, but all of a sudden you have this massive big data collection problem on the back end where you as the attacker have created a different kind of analysis problem. Of course, some nations have more capability than others to sift through huge amounts of data they’re collecting.
BK: Can you talk about some of the things the government has typically done to figure out whether a given technology supplier might be trying to slip in a few compromised devices among an order of many?
TS: There’s this concept of the “blind buy,” where if you think the threat vector is someone gets into my supply chain and subverts the security of individual machines or groups of machines, the government figures out a way to purchase specific systems so that no one can target them. In other words, the seller doesn’t know it’s the government who’s buying it. This is a pretty standard technique to get past this, but it’s an ongoing cat and mouse game to be sure. Continue reading