Posts Tagged: Netgear


28
May 18

FBI: Kindly Reboot Your Router Now, Please

The Federal Bureau of Investigation (FBI) is warning that a new malware threat has rapidly infected more than a half-million consumer devices. To help arrest the spread of the malware, the FBI and security firms are urging home Internet users to reboot routers and network-attached storage devices made by a range of technology manufacturers.

The growing menace — dubbed VPNFilter — targets Linksys, MikroTik, NETGEAR and TP-Link networking equipment in the small and home office space, as well as QNAP network-attached storage (NAS) devices, according to researchers at Cisco.

Experts are still trying to learn all that VPNFilter is built to do, but for now they know it can do two things well: Steal Web site credentials; and issue a self-destruct command, effectively rendering infected devices inoperable for most consumers.

Cisco researchers said they’re not yet sure how these 500,000 devices were infected with VPNFilter, but that most of the targeted devices have known public exploits or default credentials that make compromising them relatively straightforward.

“All of this has contributed to the quiet growth of this threat since at least 2016,” the company wrote on its Talos Intelligence blog.

The Justice Department said last week that VPNFilter is the handiwork of “APT28,” the security industry code name for a group of Russian state-sponsored hackers also known as “Fancy Bear” and the “Sofacy Group.” This is the same group accused of conducting election meddling attacks during the 2016 U.S. presidential race.

“Foreign cyber actors have compromised hundreds of thousands of home and office routers and other networked devices worldwide,” the FBI said in a warning posted to the Web site of the Internet Crime Complaint Center (IC3). “The actors used VPNFilter malware to target small office and home office routers. The malware is able to perform multiple functions, including possible information collection, device exploitation, and blocking network traffic.”

According to Cisco, here’s a list of the known affected devices: Continue reading →


23
Oct 17

Reaper: Calm Before the IoT Security Storm?

It’s been just over a year since the world witnessed some of the world’s top online Web sites being taken down for much of the day by “Mirai,” a zombie malware strain that enslaved “Internet of Things” (IoT) devices such as wireless routers, security cameras and digital video recorders for use in large-scale online attacks.

Now, experts are sounding the alarm about the emergence of what appears to be a far more powerful strain of IoT attack malware — variously named “Reaper” and “IoTroop” — that spreads via security holes in IoT software and hardware. And there are indications that over a million organizations may be affected already.

Reaper isn’t attacking anyone yet. For the moment it is apparently content to gather gloom to itself from the darkest reaches of the Internet. But if history is any teacher, we are likely enjoying a period of false calm before another humbling IoT attack wave breaks.

On Oct. 19, 2017, researchers from Israeli security firm CheckPoint announced they’ve been tracking the development of a massive new IoT botnet “forming to create a cyber-storm that could take down the Internet.” CheckPoint said the malware, which it called “IoTroop,” had already infected an estimated one million organizations.

The discovery came almost a year to the day after the Internet witnessed one of the most impactful cyberattacks ever — against online infrastructure firm Dyn at the hands of “Mirai,” an IoT malware strain that first surfaced in the summer of 2016. According to CheckPoint, however, this new IoT malware strain is “evolving and recruiting IoT devices at a far greater pace and with more potential damage than the Mirai botnet of 2016.”

Unlike Mirai — which wriggles into vulnerable IoT devices using factory-default or hard-coded usernames and passwords — this newest IoT threat leverages at least nine known security vulnerabilities across nearly a dozen different device makers, including AVTECH, D-Link, GoAhead, Netgear, and Linksys, among others (click each vendor’s link to view security advisories for the flaws).

This graphic from CheckPoint charts a steep, recent rise in the number of Internet addresses trying to spread the new IoT malware variant, which CheckPoint calls “IoTroop.”

Both Mirai and IoTroop are computer worms; they are built to spread automatically from one infected device to another. Researchers can’t say for certain what IoTroop will be used for but it is based at least in part on Mirai, which was made to launch distributed denial of service (DDoS) attacks.

While DDoS attacks target a single Web site or Internet host, they often result in widespread collateral Internet disruption. IoT malware spreads by scanning the Internet for other vulnerable devices, and sometimes this scanning activity is so aggressive that it constitutes an unintended DDoS on the very home routers, Web cameras and DVRs that the bot code is trying to subvert and recruit into the botnet.

However, according to research released Oct. 20 by Chinese security firm Netlab 360, the scanning performed by the new IoT malware strain (Netlab calls it the more memorable “Reaper”) is not very aggressive, and is intended to spread much more deliberately than Mirai. Netlab’s researchers say Reaper partially borrows some Mirai source code, but is significantly different from Mirai in several key behaviors, including an evolution that allows Reaper to more stealthily enlist new recruits and more easily fly under the radar of security tools looking for suspicious activity on the local network. Continue reading →


29
Dec 11

New Tools Bypass Wireless Router Security

Security researchers have released new tools that can bypass the encryption used to protect many types of wireless routers. Ironically, the tools take advantage of design flaws in a technology pushed by the wireless industry that was intended to make the security features of modern routers easier to use.

At issue is a technology called “Wi-Fi Protected Setup” (WPS) that ships with many routers marketed to consumers and small businesses. According to the Wi-Fi Alliance, an industry group, WPS is “designed to ease the task of setting up and configuring security on wireless local area networks. WPS enables typical users who possess little understanding of traditional Wi-Fi configuration and security settings to automatically configure new wireless networks, add new devices and enable security.”

Setting up a home wireless network to use encryption traditionally involved navigating a confusing array of Web-based menus, selecting from a jumble of geeky-sounding and ill-explained encryption options (WEP, WPA, WPA2, TKIP, AES), and then repeating many of those procedures on the various wireless devices the user wants to connect to the network. To make matters worse, many wireless routers come with little or no instructions on how to set up encryption.

Enter WPS. Wireless routers with WPS built-in ship with a personal identification number (PIN – usually 8 digits) printed on them. Using WPS, the user can enable strong encryption for the wireless network simply by pushing a button on the router and then entering the PIN in a network setup wizard designed to interact with the router.

But according to new research, routers with WPS are vulnerable to a very basic hacking technique: The brute-force attack. Put simply, an attacker can try thousands of combinations in rapid succession until he happens on the correct 8-digit PIN that allows authentication to the device.

One way to protect against such automated attacks is to disallow authentication for a specified amount of time after a certain number of unsuccessful attempts. Stefan Viehböck, a freelance information security researcher, said some wireless access point makers implemented such an approach. The problem, he said, is that most of the vendors did so in ways that make brute-force attacks slower, but still feasible.

Earlier today, Viehböck released on his site a free tool that he said can be used to duplicate his research and findings, detailed in this paper (PDF). He said his tool took about four hours to test all possible combinations on TP-Link and D-Link routers he examined, and less than 24 hours against a Netgear router.

“The Wi-Fi alliance members were clearly opting for usability” over security, Viehböck said in a instant message conversation with KrebsOnSecurity.com. “It is very unlikely that nobody noticed that the way they designed the protocol makes a brute force attack easier than it ever should.”

Continue reading →