Posts Tagged: vDos


6
Jun 17

Following the Money Hobbled vDOS Attack-for-Hire Service

A new report proves the value of following the money in the fight against dodgy cybercrime services known as “booters” or “stressers” — virtual hired muscle that can be rented to knock nearly any website offline.

Last fall, two 18-year-old Israeli men were arrested for allegedly running vDOS, perhaps the most successful booter service of all time. The young men were detained within hours of being named in a story on this blog as the co-proprietors of the service (KrebsOnSecurity.com would later suffer a three-day outage as a result of an attack that was alleged to have been purchased in retribution for my reporting on vDOS).

The vDos home page.

The vDos home page.

That initial vDOS story was based on data shared by an anonymous source who had hacked vDOS and obtained its private user and attack database. The story showed how the service made approximately $600,000 over just two of the four years it was in operation. Most of those profits came in the form of credit card payments via PayPal.

But prior to vDOS’s takedown in September 2016, the service was already under siege thanks to work done by a group of academic researchers who teamed up with PayPal to identify and close accounts that vDOS and other booter services were using to process customer payments. The researchers found that their interventions cut profits in half for the popular booter service, and helped reduce the number of attacks coming out of it by at least 40 percent.

At the height of vDOS’s profitability in mid-2015, the DDoS-for-hire service was earning its proprietors more than $42,000 a month in PayPal and Bitcoin payments from thousands of subscribers. That’s according to an analysis of the leaked vDOS database performed by researchers at New York University.

As detailed in August 2015’s “Stress-Testing the Booter Services, Financially,” the researchers posed as buyers of nearly two dozen booter services — including vDOS —  in a bid to discover the PayPal accounts that booter services were using to accept payments. In response to their investigations, PayPal began seizing booter service PayPal accounts and balances, effectively launching their own preemptive denial-of-service attacks against the payment infrastructure for these services.

Those tactics worked, according to a paper the NYU researchers published today (PDF) at the Weis 2017 workshop at the University of California, San Diego.

“We find that VDoS’s revenue was increasing and peaked at over $42,000/month for the month before the start of PayPal’s payment intervention and then started declining to just over $20,000/month for the last full month of revenue,” the paper notes.

subscribersThe NYU researchers found that vDOS had extremely low costs, and virtually all of its business was profit. Customers would pay up front for a subscription to the service, which was sold in booter packages priced from $5 to $300. The prices were based partly on the overall number of seconds that an attack may last (e.g., an hour would be 3,600 worth of attack seconds).

In just two of its four year in operation vDOS was responsible for launching 915,000 DDoS attacks, the paper notes. In adding up all the attack seconds from those 915,000 DDoS attacks, the researchers found vDOS was responsible for 48 “attack years” — the total amount of DDoS time faced by the victims of vDOS. Continue reading →


27
Mar 17

Alleged vDOS Owners Poised to Stand Trial

Police in Israel are recommending that the state attorney’s office indict and prosecute two 18-year-olds suspected of operating vDOS, until recently the most popular attack service for knocking Web sites offline.

On Sept. 8, 2016, KrebsOnSecurity published a story about the hacking of vDOS, a service that attracted tens of thousands of paying customers and facilitated countless distributed denial-of-service (DDoS) attacks over the four year period it was in business. That story named two young Israelis — Yarden Bidani and Itay Huri — as the likely owners and operators of vDOS, and within hours of its publication the two were arrested by Israeli police, placed on house arrest for 10 days, and forbidden from using the Internet for a month.

The front page of vDOS, when it was still online last year.

The front page of vDOS, when it was still online last year.

After those restrictions came and went, some readers expressed surprise that there were no formal charges announced against either of the young men. This week, however, Israeli police sent letters to lawyers for both men stating that the official investigation was nearing completion and that they planned to urge government prosecutors to pursue criminal charges.

The police are preparing to recommend prosecutors charge the men with computer fraud and extortion, alleging they caused more than six million shekels worth of damage (approximately USD $1.65 million).

Bidani’s attorney Perach Aroch told KrebsOnSecurity that her client has not yet been officially charged with any crime. But she said once the investigation is complete the defense will have 30 days to review the evidence and to make arguments as to why the case should be dismissed.

“They have to give us 30 days to see all the evidence and to try to convince them why they should not take this case to court,” Aroch said. “After that, [the prosecutors will] decide if it should go to trial.”

18-year-old Yarden Bidani.

18-year-old Yarden Bidani.

The arrest of Bidani and Huri came after the police received information from the Federal Bureau of Investigation (FBI). But the United States apparently isn’t the only country weighing in on this case: According to a story published Sunday by Israeli news outlet TheMarker.com, the government of Sweden also is urging Israeli prosecutors to pursue formal charges.

It’s unclear exactly why the Swedish government is so interested in this case, but the vDOS service has been implicated in a series high-profile attacks that brought down some of the country’s largest news media Web sites last year.

Shortly after those attacks in March 2016, Somerville, Mass.-based security intelligence firm Recorded Future published an analysis linking the assaults against Swedish media sites to vDOS and to “applej4ck,” the hacker nickname allegedly used by Bidani.

In publicizing the news of vDOS’s hack last year, KrebsOnSecurity also published several months of attack logs from the vDOS service. However, those logs only dated back to May 2016.

Itay Huri’s lawyer declined to comment for this story, but TheMarker’s Amitai Ziv obtained a statement from Huri’s attorney, who accused Israeli police of applying pressure and terror through the media instead of looking for the truth.

Ziv said sources he’s spoken to believe the case will almost certainly go to trial.

“Professionals involved in the case said the likelihood of indictments in the affair is very high,” he wrote.

According to Bidani’s lawyer Aroch, the two former friends are now pointing the finger of blame at each other and are no longer speaking to one another.

“They each now accuse each other in things, so it’s a little bit of a problem,” Aroch said.

Aroch said both Bidani and Huri are free to travel and even leave the country, although both men have had their bank and PayPal accounts frozen.

Bidani and Huri allegedly started vDOS when they were 14 years old. By the time the service was shut down last September, it had attracted tens of thousands of customers who paid for attacks in PayPal (when vDOS’s PayPal accounts were shut down, the service briefly shifted to accepting payment via Bitcoin).

My Sept. 2016 investigation into the hacking of vDOS revealed that in just two of the four years the service was in operation, it brought in revenues of more than $600,000. Continue reading →


18
Jan 17

Who is Anna-Senpai, the Mirai Worm Author?

On September 22, 2016, this site was forced offline for nearly four days after it was hit with “Mirai,” a malware strain that enslaves poorly secured Internet of Things (IoT) devices like wireless routers and security cameras into a botnet for use in large cyberattacks. Roughly a week after that assault, the individual(s) who launched that attack — using the name “Anna-Senpai” — released the source code for Mirai, spawning dozens of copycat attack armies online.

After months of digging, KrebsOnSecurity is now confident to have uncovered Anna-Senpai’s real-life identity, and the identity of at least one co-conspirator who helped to write and modify the malware.

The Hackforums post that includes links to the Mirai source code.

Mirai co-author Anna-Senpai leaked the source code for Mirai on Sept. 30, 2016.

Before we go further, a few disclosures are probably in order. First, this is easily the longest story I’ve ever written on this blog. It’s lengthy because I wanted to walk readers through my process of discovery, which has taken months to unravel. The details help in understanding the financial motivations behind Mirai and the botnet wars that preceded it. Also, I realize there are a great many names to keep track of as you read this post, so I’ve included a glossary.

The story you’re reading now is the result of hundreds of hours of research.  At times, I was desperately seeking the missing link between seemingly unrelated people and events; sometimes I was inundated with huge amounts of information — much of it intentionally false or misleading — and left to search for kernels of truth hidden among the dross.  If you’ve ever wondered why it seems that so few Internet criminals are brought to justice, I can tell you that the sheer amount of persistence and investigative resources required to piece together who’s done what to whom (and why) in the online era is tremendous.

As noted in previous KrebsOnSecurity articles, botnets like Mirai are used to knock individuals, businesses, governmental agencies, and non-profits offline on a daily basis. These so-called “distributed denial-of-service (DDoS) attacks are digital sieges in which an attacker causes thousands of hacked systems to hit a target with so much junk traffic that it falls over and remains unreachable by legitimate visitors. While DDoS attacks typically target a single Web site or Internet host, they often result in widespread collateral Internet disruption.

A great deal of DDoS activity on the Internet originates from so-called ‘booter/stresser’ services, which are essentially DDoS-for-hire services which allow even unsophisticated users to launch high-impact attacks.  And as we will see, the incessant competition for profits in the blatantly illegal DDoS-for-hire industry can lead those involved down some very strange paths, indeed.

THE FIRST CLUES

The first clues to Anna-Senpai’s identity didn’t become clear until I understood that Mirai was just the latest incarnation of an IoT botnet family that has been in development and relatively broad use for nearly three years.

Earlier this summer, my site was hit with several huge attacks from a collection of hacked IoT systems compromised by a family of botnet code that served as a precursor to Mirai. The malware went by several names, including “Bashlite,” “Gafgyt,” “Qbot,” “Remaiten,” and “Torlus.”

All of these related IoT botnet varieties infect new systems in a fashion similar to other well-known Internet worms — propagating from one infected host to another. And like those earlier Internet worms, sometimes the Internet scanning these systems perform to identify other candidates for inclusion into the botnet is so aggressive that it constitutes an unintended DDoS on the very home routers, Web cameras and DVRs that the bot code is trying to subvert and recruit into the botnet. This kind of self-defeating behavior will be familiar to those who recall the original Morris Worm, NIMDA, CODE RED, Welchia, Blaster and SQL Slammer disruptions of yesteryear.

Infected IoT devices constantly scan the Web for other IoT things to compromise, wriggling into devices that are protected by little more than insecure factory-default settings and passwords. The infected devices are then forced to participate in DDoS attacks (ironically, many of the devices most commonly infected by Mirai and similar IoT worms are security cameras).

Mirai’s ancestors had so many names because each name corresponded to a variant that included new improvements over time. In 2014, a group of Internet hooligans operating under the banner “lelddos” very publicly used the code to launch large, sustained attacks that knocked many Web sites offline.

The most frequent target of the lelddos gang were Web servers used to host Minecraft, a wildly popular computer game sold by Microsoft that can be played from any device and on any Internet connection.

The object of Minecraft is to run around and build stuff, block by large pixelated block. That may sound simplistic and boring, but an impressive number of people positively adore this game – particularly pre-teen males. Microsoft has sold more than a 100 million copies of Minecraft, and at any given time there are over a million people playing it online. Players can build their own worlds, or visit a myriad other blocky realms by logging on to their favorite Minecraft server to play with friends.

Image: Minecraft.net

Image: Minecraft.net

A large, successful Minecraft server with more than a thousand players logging on each day can easily earn the server’s owners upwards of $50,000 per month, mainly from players renting space on the server to build their Minecraft worlds, and purchasing in-game items and special abilities.

Perhaps unsurprisingly, the top-earning Minecraft servers eventually attracted the attention of ne’er-do-wells and extortionists like the lelddos gang. Lelddos would launch a huge DDoS attack against a Minecraft server, knowing that the targeted Minecraft server owner was likely losing thousands of dollars for each day his gaming channel remained offline.

Adding urgency to the ordeal, many of the targeted server’s loyal customers would soon find other Minecraft servers to patronize if they could not get their Minecraft fix at the usual online spot.

Robert Coelho is vice president of ProxyPipe, Inc., a San Francisco company that specializes in protecting Minecraft servers from attacks.

“The Minecraft industry is so competitive,” Coelho said. “If you’re a player, and your favorite Minecraft server gets knocked offline, you can switch to another server. But for the server operators, it’s all about maximizing the number of players and running a large, powerful server. The more players you can hold on the server, the more money you make. But if you go down, you start to lose Minecraft players very fast — maybe for good.”

In June 2014, ProxyPipe was hit with a 300 gigabit per second DDoS attack launched by lelddos, which had a penchant for publicly taunting its victims on Twitter just as it began launching DDoS assaults at the taunted.

The hacker group "lelddos" tweeted at its victims before launching huge DDoS attacks against them.

The hacker group “lelddos” tweeted at its victims before launching huge DDoS attacks against them.

At the time, ProxyPipe was buying DDoS protection from Reston, Va. -based security giant Verisign. In a quarterly report published in 2014, Verisign called the attack the largest it had ever seen, although it didn’t name ProxyPipe in the report – referring to it only as a customer in the media and entertainment business.

Verisign said the 2014 attack was launched by a botnet of more than 100,000 servers running on SuperMicro IPMI boards. Days before the huge attack on ProxyPipe, a security researcher published information about a vulnerability in the SuperMicro devices that could allow them to be remotely hacked and commandeered for these sorts of attacks.

THE CENTRALITY OF PROTRAF

Coelho recalled that in mid-2015 his company’s Minecraft customers began coming under attack from a botnet made up of IoT devices infected with Qbot. He said the attacks were directly preceded by a threat made by a then-17-year-old Christopher “CJ” Sculti, Jr., the owner and sole employee of a competing DDoS protection company called Datawagon.

Datawagon also courted Minecraft servers as customers, and its servers were hosted on Internet space claimed by yet another Minecraft-focused DDoS protection provider — ProTraf Solutions.

CJ Sculti, Jr.

Christopher “CJ” Sculti, Jr.

According to Coelho, ProTraf was trying to woo many of his biggest Minecraft server customers away from ProxyPipe. Coelho said in mid-2015, Sculti reached out to him on Skype and said he was getting ready to disable Coelho’s Skype account. At the time, an exploit for a software weakness in Skype was being traded online, and this exploit could be used to remotely and instantaneously disable any Skype account.

Sure enough, Coelho recalled, his Skype account and two others used by co-workers were shut off just minutes after that threat, effectively severing a main artery of support for ProxyPipe’s customers – many of whom were accustomed to communicating with ProxyPipe via Skype.

“CJ messaged me about five minutes before the DDoS started, saying he was going to disable my skype,” Coelho said. “The scary thing about when this happens is you don’t know if your Skype account has been hacked and under control of someone else or if it just got disabled.”

Once ProxyPipe’s Skype accounts were disabled, the company’s servers were hit with a massive, constantly changing DDoS attack that disrupted ProxyPipe’s service to its Minecraft server customers. Coelho said within a few days of the attack, many of ProxyPipe’s most lucrative Minecraft servers had moved over to servers run protected by ProTraf Solutions.

“In 2015, the ProTraf guys hit us offline tons, so a lot of our customers moved over to them,” Coelho said. “We told our customers that we knew [ProTraf] were the ones doing it, but some of the customers didn’t care and moved over to ProTraf anyway because they were losing money from being down.”

I found Coelho’s story fascinating because it eerily echoed the events leading up to my Sept. 2016 record 620 Gbps attack. I, too, was contacted via Skype by Sculti — on two occasions. The first was on July 7, 2015, when Sculti reached out apropos of nothing to brag about scanning the Internet for IoT devices running default usernames and passwords, saying he had uploaded some kind of program to more than a quarter-million systems that his scans found.

Here’s a snippet of that conversation:

July 7, 2015:

21:37 CJ: http://krebsonsecurity.com/2015/06/crooks-use-hacked-routers-to-aid-cyberheists/
21:37 CJ: vulnerable routers are a HUGE issue
21:37 CJ: a few months ago
21:37 CJ: I scanned the internet with a few sets of defualt logins
21:37 CJ: for telnet
21:37 CJ: and I was able to upload and execute a binary
21:38 CJ: on 250k devices
21:38 CJ: most of which were routers
21:38 Brian Krebs: o_0

The second time I heard from Sculti on Skype was Sept. 20, 2016 — the day of my 620 Gbps attack. Sculti was angry over a story I’d just published that mentioned his name, and he began rather saltily maligning the reputation of a source and friend who had helped me with that story.

Indignant on behalf of my source and annoyed at Sculti’s rant, I simply blocked his Skype account from communicating with mine and went on with my day. Just minutes after that conversation, however, my Skype account was flooded with thousands of contact requests from compromised or junk Skype accounts, making it virtually impossible to use the software for making phone calls or instant messaging.

Six hours after that Sept. 20 conversation with Sculti, the huge 620 Gbps DDoS attack commenced on this site. Continue reading →


13
Dec 16

‘Operation Tarpit’ Targets Customers of Online Attack-for-Hire Services

Federal investigators in the United States and Europe last week arrested nearly three-dozen people suspected of patronizing so-called “booter” services that can be hired to knock targeted Web sites offline. The global crackdown is part of an effort by authorities to weaken demand for these services by impressing upon customers that hiring someone to launch cyberattacks on your behalf can land you in jail.

On Dec. 9, 2016, the U.S. Federal Bureau of Investigation (FBI) arrested Sean Sharma, a 26-year-old student at the University of California accused of using a booter service to knock a San Francisco chat service company’s Web site offline.

Sharma was one of almost three dozen others across 13 countries who were arrested on suspicion of paying for cyberattacks. As part of a coordinated law enforcement effort dubbed “Operation Tarpit,” investigators here and abroad also executed more than 100 so-called “knock-and-talk” interviews with booter buyers who were quizzed about their involvement but not formally charged with crimes.

Netspoof's DDoS-for-hire packages. Image: Samsclass.info.

Netspoof’s DDoS-for-hire packages. Image: Samsclass.info.

Stresser and booter services leverage commercial hosting services and security weaknesses in Internet-connected devices to hurl huge volleys of junk traffic at targeted Web sites. These attacks, known as “distributed denial-of-service” (DDoS) assaults, are digital sieges aimed at causing a site to crash or at least to remain unreachable by legitimate Web visitors.

“DDoS tools are among the many specialized cyber crime services available for hire that may be used by professional criminals and novices alike,” said Steve Kelly, FBI unit chief of the International Cyber Crime Coordination Cell, a task force created earlier this year by the FBI whose stated mission is to ‘defeat the most significant cyber criminals and enablers of the cyber underground.’ “While the FBI is working with our international partners to apprehend and prosecute sophisticated cyber criminals, we also want to deter the young from starting down this path.”

According to Europol, the European Union’s law enforcement agency, the operation involved arrests and interviews of suspected DDoS-for-hire customers in Australia, Belgium, France, Hungary, Lithuania, the Netherlands, Norway, Portugal, Romania, Spain, Sweden, the United Kingdom, and the U.S. Europol said investigators are only warning one-time users, but aggressively pursuing repeat offenders who frequented the booter services.

“This successful operation marks the kick-off of a prevention campaign in all participating countries in order to raise awareness of the risk of young adults getting involved in cybercrime,” reads a statement released Monday by Europol. “Many do it for fun without realizing the consequences of their actions – but the penalties can be severe and have a negative impact on their future prospects.”

The arrests stemmed at least in part from successes that investigators had infiltrating a booter service operating under the name “Netspoof.” According to the U.K.’s National Crime Agency, Netspoof offered subscription packages ranging from £4 (~USD $5) to £380 (~USD $482) – with some customers paying more than £8,000 (> USD $10,000) to launch hundreds of attacks. The NCA said twelve people were arrested in connection with the Netspoof investigation, and that victims included gaming providers, government departments, internet hosting companies, schools and colleges.

The Netspoof portion of last week’s operation was fueled by the arrest of Netspoof’s founder — 20-year-old U.K. resident Grant Manser. As Bleeping Computer reports, Manser’s business had 12,800 registered users, of which 400 bought his tools, launching 603,499 DDoS attacks on 224,548 targets.

Manser was sentenced in April 2016 to two years youth detention suspended for 18 months, as well as 100 hours of community service. According to BC’s Catalin Cimpanu, the judge in Manser’s case went easy on him because he built safeguards in his tools that prevented customers from attacking police, hospitals and government institutions. Continue reading →


22
Nov 16

Akamai on the Record KrebsOnSecurity Attack

Internet infrastructure giant Akamai last week released a special State of the Internet report. Normally, the quarterly accounting of noteworthy changes in distributed denial-of-service (DDoS) attacks doesn’t delve into attacks on specific customers. But this latest Akamai report makes an exception in describing in great detail the record-sized attack against KrebsOnSecurity.com in September, the largest such assault it has ever mitigated.

“The attacks made international headlines and were also covered in depth by Brian Krebs himself,” Akamai said in its report, explaining one reason for the exception. “The same data we’ve shared here was made available to Krebs for his own reporting and we received permission to name him and his site in this report. Brian Krebs is a security blogger and reporter who does in-depth research and analysis of cybercrime throughout the world, with a recent emphasis on DDoS. His reporting exposed a stressor site called vDOS and the security firm BackConnect Inc., which made him the target of a series of large DDoS attacks starting September 15, 2016.”

A visual depiction of the increasing size and frequency of DDoS attacks against KrebsOnSecurity.com, between 2012 and 2016. Source: Akamai.

A visual depiction of the increasing size and frequency of DDoS attacks against KrebsOnSecurity.com, between 2012 and 2016. Source: Akamai.

Akamai said so-called “booter” or “stresser” DDoS-for-hire services that sell attacks capable of knocking Web sites offline continue to account for a large portion of the attack traffic in mega attacks. According to Akamai, most of the traffic from those mega attacks in Q3 2016 were thanks to Mirai — the now open-source malware family that was used to coordinate the attack on this site in September and a separate assault against infrastructure provider Dyn in October.

Akamai said the attack on Sept. 20 was launched by just 24,000 systems infected with Mirai, mostly hacked Internet of Things (IoT) devices such as digital video recorders and security cameras.

“The first quarter of 2016 marked a high point in the number of attacks peaking at more than 100 Gbps,” Akamai stated in its report. “This trend was matched in Q3 2016, with another 19 mega attacks. It’s interesting that while the overall number of attacks fell by 8% quarter over quarter, the number of large attacks, as well as the size of the biggest attacks, grew significantly.”

As detailed here in several previous posts, KrebsOnSecurity.com was a pro-bono customer of Akamai, beginning in August 2012 with Prolexic before Akamai acquired them. Akamai mentions this as well in explaining its decision to terminate our pro-bono arrangement. KrebsOnSecurity is now behind Google‘s Project Shield, a free program run by Google to help protect journalists and dissidents from online censorship.

“Almost as soon as the site was on the Prolexic network, it was hit by a trio of attacks based on the Dirt Jumper DDoS tookit,” Akamai wrote of this site. “Those attacks marked the start of hundreds of attacks that were mitigated on the routed platform.”

In total, Akamai found, this site received 269 attacks in the little more than four years it was on the Prolexic/Akamai network. Continue reading →


17
Nov 16

Adobe Fined $1M in Multistate Suit Over 2013 Breach; No Jail for Spamhaus Attacker

Adobe will pay just $1 million to settle a lawsuit filed by 15 state attorneys general over its huge 2013 data breach that exposed payment records on approximately 38 million people. In other news, the 39-year-old Dutchman responsible for coordinating an epic, weeks-long distributed denial-of-service attack against anti-spam provider Spamhaus in 2013 will avoid any jail time for his crimes thanks to a court ruling in Amsterdam this week.

On Oct. 3, 2013, KrebsOnSecurity broke the story that Adobe had just suffered a breach in which hackers siphoned usernames, passwords and payment card data on 38 million customers. The intruders also made off with digital truckloads of source code for some of Adobe’s most valuable software properties — including Adobe Acrobat and Reader, Photoshop and ColdFusion.

On Monday, Nov. 11, North Carolina Attorney General  Roy Cooper joined his counterparts in 14 other states in announcing a $1 million settlement with Adobe over the 2013 breach. According to Cooper, the hacked Adobe servers contained the personal information of approximately 552,000 residents of the participating 15 states. That works out to about $1.80 per victim across all 15 states.

A posting on anonnews.org that was later deleted.

A posting on anonnews.org that was later deleted.

According to a statement by Massachusetts Attorney General Maura Healey, “an investigation by the states revealed that in September 2013, Adobe received an alert that the hard drive for one of its application servers was nearing capacity. In responding to the alert, Adobe learned that an unauthorized attempt was being made to decrypt customer payment card numbers maintained on the server.”

“Adobe discovered that one or more unauthorized intruder(s) had compromised a public-facing web server and used it to access other servers on Adobe’s network, including areas where Adobe stored consumer data,” the statement from Healey’s office reads. “The intruder(s) ultimately stole consumer data from Adobe’s servers, including encrypted payment card numbers and expiration dates, names, addresses, telephone numbers, e-mail addresses, usernames (Adobe IDs), and passwords associated with the usernames.”

When I think of the Adobe breach I’m reminded of that scene out of the 1982 Spielberg horror classic “Poltergeist,” when Craig T. Nelson as “Steve Freeling” seizes the horrified neighborhood developer Mr. Teague by his coat collars and screams, “You son of a bitch! You moved the cemetery but you left the bodies, didn’t ya?! You left left the bodies and you only moved the headstones!! Why?!?!?! Whyyyyyyeeeiee??!?!?”

A scene from Poltergeist. Image: IMDB.

A scene from Poltergeist. Image: IMDB.

Likewise, Adobe had various storefronts for its various software products, but it eventually centralized many store operations. The main trouble was the company left copies of their customer records in multiple internal network locations that were no longer as protected as Adobe’s globally centralized storefront.

North Carolina’s Cooper said in a statement on the settlement that businesses and government must do more to protect consumer data. But if this settlement was meant as a deterrent to dissuade other companies from hosting customer payment data on public-facing Web servers, the fine might be more effective if it were more commensurate with the company’s size and the number of customers impacted.

As Digital Trends notes, such a breach under the new General Data Protection Regulation going into effect in 2018, would be quite a bit more costly. “Adobe could face fines of up to four percent of its annual global turnover,” wrote Jonathan Keane for DT. “Last we checked, Adobe’s previous quarterly earnings were $1.4 billion.”

Keane also notes that Adobe had previously settled a similar case in California where it settled for an undisclosed amount and $1.1 million in legal fees.

One interesting nugget tucked in at the end of the statement from the North Carolina AG’s office is this bit: More than 3,700 breaches impacting nearly 10 million North Carolinians have been reported since the state’s data breach notification law took effect in 2005, including 677 breaches reported so far in 2016. According to the United States Census Bureau, there were just over 10 million residents in North Carolina as of July 2015. Continue reading →


27
Oct 16

Are the Days of “Booter” Services Numbered?

It may soon become easier for Internet service providers to anticipate and block certain types of online assaults launched by Web-based attack-for-hire services known as “booter” or “stresser” services, new research released today suggests.

The findings come from researchers in Germany who’ve been studying patterns that emerge when miscreants attempt to mass-scan the entire Internet looking for systems useful for launching these digital sieges — known as “distributed denial-of-service” or DDoS attacks.

ddosbomb

To understand the significance of their research, it may help to briefly examine how DDoS attacks have evolved. Not long ago, if one wanted to take down large Web site, one had to build and maintain a large robot network, or “botnet,” of hacked computers — which is a fairly time intensive, risky and technical endeavor.

These days, however, even the least sophisticated Internet user can launch relatively large DDoS attacks just by paying a few bucks for a subscription to one of dozens of booter or stresser services, some of which even accept credit cards and PayPal payments.

These Web-based DDoS-for-hire services don’t run on botnets: They generally employ a handful of powerful servers that are rented from some dodgy “bulletproof” hosting provider. The booter service accepts payment and attack instructions via a front end Web site that is hidden behind Cloudflare (a free DDoS protection service).

But the back end of the booter service is where the really interesting stuff happens. Virtually all of the most powerful and effective attack types used by booter services rely on a technique called traffic amplification and reflection, in which the attacker can reflect or “spoof” his traffic from one or more third-party machines toward the intended target.

In this type of assault, the attacker sends a message to a third party, while spoofing the Internet address of the victim. When the third party replies to the message, the reply is sent to the victim — and the reply is much larger than the original message, thereby amplifying the size of the attack.

To find vulnerable systems that can be leveraged this way, booters employ large-scale Internet scanning services that constantly seek to refresh the list of systems that can be used for amplification and reflection attacks. They do this because, as research has shown (PDF), anywhere from 40-50 percent of the amplifiers vanish or are reassigned new Internet addresses after one week.

Enter researchers from Saarland University in Germany, as well as the Yokohama National University and National Institute of Information and Communications Technology — both in Japan. In a years-long project first detailed in 2015, the researchers looked for scanning that appeared to be kicked off by ne’er-do-wells running booter services.

To accomplish this, the research team built a kind of distributed “honeypot” system — which they dubbed “AmpPot” — designed to mimic services known to be vulnerable to amplification attacks, such as DNS and NTP floods.

“To make them attractive to attackers, our honeypots send back legitimate responses,” the researchers wrote in a 2015 paper (PDF). “Attackers, in turn, will abuse these honeypots as amplifiers, which allows us to observe ongoing attacks, their victims, and the DDoS techniques. To prevent damage caused by our honeypots, we limit the response rate. This way, while attackers can still find these ratelimited honeypots, the honeypots stop replying in the face of attacks.”

In that 2015 paper, the researchers said they deployed 21 globally-distributed AmpPot instances, which observed more than 1.5 million attacks between February and May 2015. Analyzing the attacks more closely, they found that more than 96% of the attacks stem from single sources, such as booter services.

“When focusing on amplification DDoS attacks, we find that almost all of them (>96%) are caused by single sources (e.g. booters), and not botnets,” the team concluded. “However, we sadly do not have the numbers to compare this [to] DoS attacks in general.”

Many large-scale Internet scans like the ones the researchers sought to measure are launched by security firms and other researchers, so the team needed a way to differentiate between scans launched by booter services and those conducted for research or other benign purposes.

“To distinguish between scans performed by researchers and scans performed with malicious intent we relied on a simple assumption: That no attack would be based on the results of a scan performed by (ethical) researchers,” said Johannes Krupp, one of the main authors of the report. “In fact, thanks to our methodology, we do not have to make this distinction upfront, but we can rather look at the results and say: ‘We found attacks linked to this scanner, therefore this scanner must have been malicious.’ If a scan was truly performed by benign parties, we will not find attacks linked to it.”

SECRET IDENTIFIERS

What’s new in the paper being released today by students at Saarland University’s Center for IT-Security, Privacy and Accountability (CISPA) is the method by which the researchers were able to link these mass-scans to the very amplification attacks that follow soon after.

The researchers worked out a way to encode a secret identifier into the set of AmpPot honeypots that any subsequent attack will use, which varies per scan source. They then tested to see if the scan infrastructure was also used to actually launch (and not just to prepare) the attacks. Continue reading →


19
Oct 16

Spreading the DDoS Disease and Selling the Cure

Earlier this month a hacker released the source code for Mirai, a malware strain that was used to launch a historically large 620 Gbps denial-of-service attack against this site in September. That attack came in apparent retribution for a story here which directly preceded the arrest of two Israeli men for allegedly running an online attack for hire service called vDOS. Turns out, the site where the Mirai source code was leaked had some very interesting things in common with the place vDOS called home.

The domain name where the Mirai source code was originally placed for download — santasbigcandycane[dot]cx — is registered at the same domain name registrar that was used to register the now-defunct DDoS-for-hire service vdos-s[dot]com.

Normally, this would not be remarkable, since most domain registrars have thousands or millions of domains in their stable. But in this case it is interesting mainly because the registrar used by both domains — a company called namecentral.comhas apparently been used to register just 38 domains since its inception by its current owner in 2012, according to a historic WHOIS records gathered by domaintools.com (for the full list see this PDF).

What’s more, a cursory look at the other domains registered via namecentral.com since then reveals a number of other DDoS-for-hire services, also known as “booter” or “stresser” services.

It’s extremely odd that someone would take on the considerable cost and trouble of creating a domain name registrar just to register a few dozen domains. It costs $3,500 to apply to the Internet Corporation for Assigned Names and Numbers (ICANN) for a new registrar authority. The annual fee for being an ICANN-approved registrar is $4,000, and then there’s a $800 quarterly fee for smaller registrars. In short, domain name registrars generally need to register many thousands of new domains each year just to turn a profit.

Many of the remaining three dozen or so domains registered via Namecentral over the past few years are tied to vDOS. Before vDOS was taken offline it was massively hacked, and a copy of the user and attack database was shared with KrebsOnSecurity. From those records it was easy to tell which third-party booter services were using vDOS’s application programming interface (API), a software function that allowed them to essentially resell access to vDOS with their own white-labeled stresser.

And a number of those vDOS resellers were registered through Namecentral, including 83144692[dot].com — a DDoS-for-hire service marketed at Chinese customers. Another Namecentral domain — vstress.net — also was a vDOS reseller.

Other DDoS-for-hire domains registered through Namecentral include xboot[dot]net, xr8edstresser[dot]com, snowstresser[dot]com, ezstress[dot]com, exilestress[dot]com, diamondstresser[dot]net, dd0s[dot]pw, rebelsecurity[dot]net, and beststressers[dot]com.

WHO RUNS NAMECENTRAL?

Namecentral’s current owner is a 19-year-old California man by the name of Jesse Wu. Responding to questions emailed from KrebsOnSecurity, Wu said Namecentral’s policy on abuse was inspired by Cloudflare, the DDoS protection company that guards Namecentral and most of the above-mentioned DDoS-for-hire sites from attacks of the very kind they sell.

“I’m not sure (since registrations are automated) but I’m going to guess that the reason you’re interested in us is because some stories you’ve written in the past had domains registered on our service or otherwise used one of our services,” Wu wrote.

“We have a policy inspired by Cloudflare’s similar policy that we ourselves will remain content-neutral and in the support of an open Internet, we will almost never remove a registration or stop providing services, and furthermore we’ll take any effort to ensure that registrations cannot be influenced by anyone besides the actual registrant making a change themselves – even if such website makes us uncomfortable,” Wu said. “However, as a US based company, we are held to US laws, and so if we receive a valid court issued order to stop providing services to a client, or to turn over/disable a domain, we would happily comply with such order.”

Wu’s message continued:

“As of this email, we have never received such an order, we have never been contacted by any law enforcement agency, and we have never even received a legitimate, credible abuse report. We realize this policy might make us popular with ‘dangerous’ websites but even then, if we denied them services, simply not providing them services would not make such website stop existing, they would just have to find some other service provider/registrar or change domains more often. Our services themselves cannot be used for anything harmful – a domain is just a string of letters, and the rest of our services involve website/ddos protection/ecommerce security services designed to protect websites.”

Taking a page from Cloudflare, indeed. I’ve long taken Cloudflare to task for granting DDoS protection for countless DDoS-for-hire services, to no avail. I’ve maintained that Cloudflare has a blatant conflict of interest here, and that the DDoS-for-hire industry would quickly blast itself into oblivion because the proprietors of these attack services like nothing more than to turn their attack cannons on each other. Cloudflare has steadfastly maintained that picking and choosing who gets to use their network is a slippery slope that it will not venture toward.

Although Mr. Wu says he had nothing to do with the domains registered through Namecentral, public records filed elsewhere raise serious unanswered questions about that claim.

In my Sept. 8 story, Israeli Online Attack Service Earned $600,000 in Two Years, I explained that the hacked vDOS database indicated the service was run by two 18-year-old Israeli men. At some point, vDOS decided to protect all customer logins to the service with an extended validation (EV) SSL certificate. And for that, it needed to show it was tied to an actual corporate entity.

My investigation into those responsible for supporting vDOS began after I took a closer look at the SSL certificate that vDOS-S[dot]com used to encrypt customer logins. On May 12, 2015, Digicert.com issued an EV SSL certificate for vDOS, according to this record.

As we can see, whoever registered that EV cert did so using the business name VS NETWORK SERVICES LTD, and giving an address in the United Kingdom of 217 Blossomfield Rd., Solihull, West Midlands.

Who owns VS NETWORK SERVICES LTD? According this record from Companies House UK — an official ledger of corporations located in the United Kingdom — the director of the company was listed as one Thomas McGonagall. 

Records from Companies House UK on the firm responsible for registering vDOS's SSL certificate.

Records from Companies House UK on the firm responsible for registering vDOS’s SSL certificate.

This individual gave the same West Midlands address, stating that he was appointed to VS Network Services on May 12, 2015, and that his birthday was in May 1988. A search in Companies House for Thomas McGonagall shows that a person by that same name and address also was listed that very same day as a director for a company called REBELSECURITY LTD.

If we go back even further into the corporate history of this mysterious Mr. McGonagall we find that he was appointed director of NAMECENTRAL LTD on August 18, 2014. Mr. McGonagall’s birthday is listed as December 1995 in this record, and his address is given as 29 Wigorn Road, 29 Wigorn Road, Smethwick, West Midlands, United Kingdom, B67 5HL. Also on that same day, he was appointed to run EZSTRESS LTD, a company at the same Smethwick, West Midlands address.

Strangely enough, those company names correspond to other domains registered through Namecentral around the same time the companies were created, including rebelsecurity[dot]net, ezstress[dot]net.

Asked to explain the odd apparent corporate connections between Namecentral, vDOS, EZStress and Rebelsecurity, Wu chalked that up to an imposter or potential phishing attack.

“I’m not sure who that is, and we are not affiliated with Namecentral Ltd.,” he wrote. “I looked it up though and it seems like it is either closed or has never been active. From what you described it could be possible someone set up shell companies to try and get/resell EV certs (and someone’s failed attempt to set up a phishing site for us – thanks for the heads up).”

Interestingly, among the three dozen or so domains registered through Namecentral.com is “certificateavenue.com,” a site that until recently included nearly identical content as Namecentral’s home page and appears to be aimed at selling EV certs. Certificateavenue.com was responding as of early-October, but it is no longer online.

I also asked Wu why he chose to become a domain registrar when it appeared he had very few domains to justify the substantial annual costs of maintaining a registrar business. Continue reading →


21
Sep 16

KrebsOnSecurity Hit With Record DDoS

On Tuesday evening, KrebsOnSecurity.com was the target of an extremely large and unusual distributed denial-of-service (DDoS) attack designed to knock the site offline. The attack did not succeed thanks to the hard work of the engineers at Akamai, the company that protects my site from such digital sieges. But according to Akamai, it was nearly double the size of the largest attack they’d seen previously, and was among the biggest assaults the Internet has ever witnessed.
iotstuf

The attack began around 8 p.m. ET on Sept. 20, and initial reports put it at approximately 665 Gigabits of traffic per second. Additional analysis on the attack traffic suggests the assault was closer to 620 Gbps in size, but in any case this is many orders of magnitude more traffic than is typically needed to knock most sites offline.

Martin McKeay, Akamai’s senior security advocate, said the largest attack the company had seen previously clocked in earlier this year at 363 Gbps. But he said there was a major difference between last night’s DDoS and the previous record holder: The 363 Gpbs attack is thought to have been generated by a botnet of compromised systems using well-known techniques allowing them to “amplify” a relatively small attack into a much larger one.

In contrast, the huge assault this week on my site appears to have been launched almost exclusively by a very large botnet of hacked devices.

The largest DDoS attacks on record tend to be the result of a tried-and-true method known as a DNS reflection attack. In such assaults, the perpetrators are able to leverage unmanaged DNS servers on the Web to create huge traffic floods.

Ideally, DNS servers only provide services to machines within a trusted domain. But DNS reflection attacks rely on consumer and business routers and other devices equipped with DNS servers that are (mis)configured to accept queries from anywhere on the Web. Attackers can send spoofed DNS queries to these so-called “open recursive” DNS servers, forging the request so that it appears to come from the target’s network. That way, when the DNS servers respond, they reply to the spoofed (target) address.

The bad guys also can amplify a reflective attack by crafting DNS queries so that the responses are much bigger than the requests. They do this by taking advantage of an extension to the DNS protocol that enables large DNS messages. For example, an attacker could compose a DNS request of less than 100 bytes, prompting a response that is 60-70 times as large. This “amplification” effect is especially pronounced if the perpetrators query dozens of DNS servers with these spoofed requests simultaneously.

But according to Akamai, none of the attack methods employed in Tuesday night’s assault on KrebsOnSecurity relied on amplification or reflection. Rather, many were garbage Web attack methods that require a legitimate connection between the attacking host and the target, including SYN, GET and POST floods.

That is, with the exception of one attack method: Preliminary analysis of the attack traffic suggests that perhaps the biggest chunk of the attack came in the form of traffic designed to look like it was generic routing encapsulation (GRE) data packets, a communication protocol used to establish a direct, point-to-point connection between network nodes. GRE lets two peers share data they wouldn’t be able to share over the public network itself.

“Seeing that much attack coming from GRE is really unusual,” Akamai’s McKeay said. “We’ve only started seeing that recently, but seeing it at this volume is very new.” Continue reading →


20
Sep 16

DDoS Mitigation Firm Has History of Hijacks

Last week, KrebsOnSecurity detailed how BackConnect Inc. — a company that defends victims against large-scale distributed denial-of-service (DDoS) attacks — admitted to hijacking hundreds of Internet addresses from a European Internet service provider in order to glean information about attackers who were targeting BackConnect. According to an exhaustive analysis of historic Internet records, BackConnect appears to have a history of such “hacking back” activity.

On Sept. 8, 2016, KrebsOnSecurity exposed the inner workings of vDOS, a DDoS-for-hire or “booter” service whose tens of thousands of paying customers used the service to launch attacks against hundreds of thousands of targets over the service’s four-year history in business.

vDOS as it existed on Sept. 8, 2016.

vDOS as it existed on Sept. 8, 2016.

Within hours of that story running, the two alleged owners — 18-year-old Israeli men identified in the original report — were arrested in Israel in connection with an FBI investigation into the shady business, which earned well north of $600,000 for the two men.

In my follow-up report on their arrests, I noted that vDOS itself had gone offline, and that automated Twitter feeds which report on large-scale changes to the global Internet routing tables observed that vDOS’s provider — a Bulgarian host named Verdina[dot]net — had been briefly relieved of control over 255 Internet addresses (including those assigned to vDOS) as the direct result of an unusual counterattack by BackConnect.

Asked about the reason for the counterattack, BackConnect CEO Bryant Townsend confirmed to this author that it had executed what’s known as a “BGP hijack.” In short, the company had fraudulently “announced” to the rest of the world’s Internet service providers (ISPs) that it was the rightful owner of the range of those 255 Internet addresses at Verdina occupied by vDOS.

In a post on NANOG Sept. 13, BackConnect’s Townsend said his company took the extreme measure after coming under a sustained DDoS attack thought to have been launched by a botnet controlled by vDOS. Townsend explained that the hijack allowed his firm to “collect intelligence on the actors behind the botnet as well as identify the attack servers used by the booter service.”

Short for Border Gateway Protocol, BGP is a mechanism by which ISPs of the world share information about which providers are responsible for routing Internet traffic to specific addresses. However, like most components built into the modern Internet, BGP was never designed with security in mind, which leaves it vulnerable to exploitation by rogue actors.

BackConnect’s BGP hijack of Verdina caused quite an uproar among many Internet technologists who discuss such matters at the mailing list of the North American Network Operators Group (NANOG).

BGP hijacks are hardly unprecedented, but when they are non-consensual they are either done accidentally or are the work of cyber criminals such as spammers looking to hijack address space for use in blasting out junk email. If BackConnect’s hijacking of Verdina was an example of a DDoS mitigation firm “hacking back,” what would discourage others from doing the same, they wondered?

“Once we let providers cross the line from legal to illegal actions, we’re no better than the crooks, and the Internet will descend into lawless chaos,” wrote Mel Beckman, owner of Beckman Software Engineering and a computer networking consultant in the Los Angeles area. “BackConnect’s illicit action undoubtedly injured innocent parties, so it’s not self defense, any more than shooting wildly into a crowd to stop an attacker would be self defense.”

A HISTORY OF HIJACKS

Townsend’s explanation seemed to produce more questions than answers among the NANOG crowd (read the entire “Defensive BGP Hijacking” thread here if you dare). I grew more curious to learn whether this was a pattern for BackConnect when I started looking deeper into the history of two young men who co-founded BackConnect (more on them in a bit).

To get a better picture of BackConnect’s history, I turned to BGP hijacking expert Doug Madory, director of Internet analysis at Dyn, a cloud-based Internet performance management company. Madory pulled historic BGP records for BackConnect, and sure enough a strange pattern began to emerge.

Madory was careful to caution up front that not all BGP hijacks are malicious. Indeed, my DDoS protection provider — a company called Prolexic Communications (now owned by Akamai Technologies) — practically invented the use of BGP hijacks as a DDoS mitigation method, he said.

In such a scenario, an organization under heavy DDoS attack might approach Prolexic and ask for assistance. With the customer’s permission, Prolexic would use BGP to announce to the rest of the world’s ISPs that it was now the rightful owner of the Internet addresses under attack. This would allow Prolexic to “scrub” the customer’s incoming Web traffic to drop data packets designed to knock the customer offline — and forward the legitimate traffic on to the customer’s site.

Given that BackConnect is also a DDoS mitigation company, I asked Madory how one could reasonably tell the difference between a BGP hijack that BackConnect had launched to protect a client versus one that might have been launched for other purposes — such as surreptitiously collecting intelligence on DDoS-based botnets and their owners?

Madory explained that in evaluating whether a BGP hijack is malicious or consensual, he looks at four qualities: The duration of the hijack; whether it was announced globally or just to the target ISP’s local peers; whether the hijacker took steps to obfuscate which ISP was doing the hijacking; and whether the hijacker and hijacked agreed upon the action.

bcbgp

For starters, malicious BGP attacks designed to gather information about an attacking host are likely to be very brief — often lasting just a few minutes. The brevity of such hijacks makes them somewhat ineffective at mitigating large-scale DDoS attacks, which often last for hours at a time. For example, the BGP hijack that BackConnect launched against Verdina lasted a fraction of an hour, and according to the company’s CEO was launched only after the DDoS attack subsided.

Second, if the party conducting the hijack is doing so for information gathering purposes, that party may attempt to limit the number ISPs that receive the new routing instructions. This might help an uninvited BGP hijacker achieve the end result of intercepting traffic to and from the target network without informing all of the world’s ISPs simultaneously.

“If a sizable portion of the Internet’s routers do not carry a route to a DDoS mitigation provider, then they won’t be sending DDoS traffic destined for the corresponding address space to the provider’s traffic scrubbing centers, thus limiting the efficacy of any mitigation,” Madory wrote in his own blog post about our joint investigation.

Thirdly, a BGP hijacker who is trying not to draw attention to himself can “forge” the BGP records so that it appears that the hijack was performed by another party. Madory said this forgery process often fools less experienced investigators, but that ultimately it is impossible to hide the true origin of forged BGP records.

Finally, in BGP hijacks that are consensual for DDoS mitigation purposes, the host under attack stops “announcing” to the world’s ISPs that it is the rightful owner of an address block under siege at about the same time the DDoS mitigation provider begins claiming it. When we see BGP hijacks in which both parties are claiming in the BGP records to be authoritative for a given swath of Internet addresses, Madory said, it’s less likely that the BGP hijack is consensual.

Madory and KrebsOnSecurity spent several days reviewing historic records of BGP hijacks attributed to BackConnect over the past year, and at least three besides the admitted hijack against Verdina strongly suggest that the company has engaged in this type of intel-gathering activity previously. The strongest indicator of a malicious and non-consensual BGP hijack, Madory said, were the ones that included forged BGP records. Continue reading →