Leader of DDoS-for-Hire Gang Pleads Guilty to Bomb Threats

September 6, 2018

A 19-year-old man from the United Kingdom who headed a cybercriminal group whose motto was “Feds Can’t Touch Us” pleaded guilty this week to making bomb threats against thousands of schools.

On Aug. 31, officers with the U.K.’s National Crime Agency (NCA) arrested Hertfordshire resident George Duke-Cohan, who admitted making bomb threats to thousands of schools and a United Airlines flight traveling from the U.K. to San Francisco last month.

One of many tweets from the attention-starved Apophis Squad, which launched multiple DDoS attacks against KrebsOnsecurity and Protonmail over the past few months.

Duke-Cohan — a.k.a. “7R1D3N7,” “DoubleParallax” and “Optcz1” — was among the most vocal members of a group of Internet hooligans that goes by the name “Apophis Squad,” which for the better part of 2018 has been launching distributed denial-of-service (DDoS) attacks against multiple Web sites, including KrebsOnSecurity and Protonmail.com.

Incredibly, all self-described members of Duke-Cohan’s clique were active users of Protonmail, even as they repeatedly attacked its servers and taunted the company on social media.

“What we found, combined with intelligence provided by renowned cyber security journalist Brian Krebs, allowed us to conclusively identify Duke-Cohan as a member of Apophis Squad in the first week of August, and we promptly informed law enforcement,” Protonmail wrote in a blog post published today. “British police did not move to immediately arrest Duke-Cohan however, and we believe there were good reasons for that. Unfortunately, this meant that through much of August, ProtonMail remained under attack, but due to the efforts of Radware, ProtonMail users saw no impact.” Continue reading

Browser Extensions: Are They Worth the Risk?

September 5, 2018

Popular file-sharing site Mega.nz is warning users that cybercriminals hacked its browser extension for Google Chrome so that usernames and passwords submitted through the browser were copied and forwarded to a rogue server in Ukraine. This attack serves as a fresh reminder that legitimate browser extensions can and periodically do fall into the wrong hands, and that it makes good security sense to limit your exposure to such attacks by getting rid of extensions that are no longer useful or actively maintained by developers.

In a statement posted to its Web site, Mega.nz said the extension for Chrome was compromised after its Chrome Web store account was hacked. From their post:

“On 4 September 2018 at 14:30 UTC, an unknown attacker uploaded a trojaned version of MEGA’s Chrome extension, version 3.39.4, to the Google Chrome webstore. Upon installation or autoupdate, it would ask for elevated permissions (Read and change all your data on the websites you visit) that MEGA’s real extension does not require and would (if permissions were granted) exfiltrate credentials for sites including amazon.com, live.com, github.com, google.com (for webstore login), myetherwallet.com, mymonero.com, idex.market and HTTP POST requests to other sites, to a server located in Ukraine. Note that mega.nz credentials were not being exfiltrated.”

Browser extensions can be incredibly handy and useful, but compromised extensions — depending on the level of “permissions” or access originally granted to them — also can give attackers access to all data on your computer and the Web sites you visit.

For its part, Google tries to communicate the potential risk of extensions using three “alert” levels: Low, medium and high, as detailed in the screenshot below. In practice, however, most extensions carry the medium or high alert level, which means that if the extension is somehow compromised (or malicious from the get-go), the attacker in control of it is going to have access to ton of sensitive information on a great many Internet users. Continue reading

Advertisement

For 2nd Time in 3 Years, Mobile Spyware Maker mSpy Leaks Millions of Sensitive Records

September 4, 2018

mSpy, the makers of a software-as-a-service product that claims to help more than a million paying customers spy on the mobile devices of their kids and partners, has leaked millions of sensitive records online, including passwords, call logs, text messages, contacts, notes and location data secretly collected from phones running the stealthy spyware.

Less than a week ago, security researcher Nitish Shah directed KrebsOnSecurity to an open database on the Web that allowed anyone to query up-to-the-minute mSpy records for both customer transactions at mSpy’s site and for mobile phone data collected by mSpy’s software. The database required no authentication.

A list of data points that can be slurped from a mobile device that is secretly running mSpy’s software.

Before it was taken offline sometime in the past 12 hours, the database contained millions of records, including the username, password and private encryption key of each mSpy customer who logged in to the mSpy site or purchased an mSpy license over the past six months. The private key would allow anyone to track and view details of a mobile device running the software, Shah said.

In addition, the database included the Apple iCloud username and authentication token of mobile devices running mSpy, and what appear to be references to iCloud backup files. Anyone who stumbled upon this database also would have been able to browse the Whatsapp and Facebook messages uploaded from mobile devices equipped with mSpy.

Usernames, passwords, text messages and loads of other more personal details were leaked from mobile devices running mSpy.

Other records exposed included the transaction details of all mSpy licenses purchased over the last six months, including customer name, email address, mailing address and amount paid. Also in the data set were mSpy user logs — including the browser and Internet address information of people visiting the mSpy Web site.

Shah said when he tried to alert mSpy of his findings, the company’s support personnel ignored him.

“I was chatting with their live support, until they blocked me when I asked them to get me in contact with their CTO or head of security,” Shah said.

KrebsOnSecurity alerted mSpy about the exposed database on Aug. 30. This morning I received an email from mSpy’s chief security officer, who gave only his first name, “Andrew.”

“We have been working hard to secure our system from any possible leaks, attacks, and private information disclosure,” Andrew wrote. “All our customers’ accounts are securely encrypted and the data is being wiped out once in a short period of time. Thanks to you we have prevented this possible breach and from what we could discover the data you are talking about could be some amount of customers’ emails and possibly some other data. However, we could only find that there were only a few points of access and activity with the data.”

Some of those “points of access” were mine. In fact, because mSpy’s Web site access logs were leaked I could view evidence of my own activity on their site in real-time via the exposed database, as could Shah of his own poking around.

A screen shot of the exposed database. The records shown here are non-sensitive “debug” logs.

Continue reading

Alleged ‘Satori’ IoT Botnet Operator Sought Media Spotlight, Got Indicted

September 2, 2018

A 20-year-old from Vancouver, Washington was indicted last week on federal hacking charges and for allegedly operating the “Satori” botnet, a malware strain unleashed last year that infected hundreds of thousands of wireless routers and other “Internet of Things” (IoT) devices. This outcome is hardly surprising given that the accused’s alleged alter ego has been relentless in seeking media attention for this global crime machine.

Schuchman, in an undated photo posted online and referenced in a “dox,” which alleged in Feb. 2018 that Schuchman was Nexus Zeta.

The Daily Beast‘s Kevin Poulsen broke the news last week that federal authorities in Alaska indicted Kenneth Currin Schuchman of Washington on two counts of violating the Computer Fraud and Abuse Act by using malware to damage computers between August and November 2017.

The 3-page indictment (PDF) is incredibly sparse, and includes few details about the meat of the charges against Schuchman. But according to Poulsen, the charges are related to Schuchman’s alleged authorship and use of the Satori botnet. Satori, also known as “Masuta,” is a variant of the Mirai botnet, a powerful IoT malware strain that first came online in July 2016.

“Despite the havoc he supposedly wreaked, the accused hacker doesn’t seem to have been terribly knowledgeable about hacking,” Poulsen notes.

Schuchman reportedly went by the handle “Nexus Zeta,” the nickname used by a fairly inexperienced and clumsy ne’er-do-well who has tried on multiple occasions to get KrebsOnSecurity to write about the Satori botnet. In January 2018, Nexus Zeta changed the login page for his botnet control panel that he used to remotely control his hacked routers to include a friendly backhanded reference to this author:

The login prompt for Nexus Zeta’s IoT botnet included the message “Masuta is powered and hosted on Brian Kreb’s [sic] 4head.” To be precise, it’s a 5head.

This wasn’t the first time Nexus Zeta said hello. In late November 2017, he chatted me up on on Twitter and Jabber instant message for several days. Most of the communications came from two accounts: “9gigs_ProxyPipe” on Twitter, and ogmemes123@jabber.ru (9gigs_ProxyPipe would later change its Twitter alias to Nexus Zeta, and Nexus Zeta himself admitted that 9gigs_ProxyPipe was his Twitter account.)

In each case, this person wanted to talk about a new IoT botnet that he was “researching” and that he thought deserved special attention for its size and potential disruptive impact should it be used in a massive Distributed Denial-of-Service (DDoS) attack aimed at knocking a Web site offline — something for which Satori would soon become known.

A Jabber instant message conversation with Nexus Zeta on Nov. 29, 2017.

Nexus Zeta’s Twitter nickname initially confused me because both 9gigs and ProxyPipe are names claimed by Robert Coelho, owner of ProxyPipe hosting (9gigs is a bit from one of Coelho’s Skype account names). Coelho’s sleuthing was quite instrumental in helping to unmask 21-year-old New Jersey resident Paras Jha as the author of the original Mirai IoT botnet (Jha later pleaded guilty to co-authoring and using Mirai and is due to be sentenced this month in Alaska and New Jersey). “Ogmemes” is from a nickname used by Jha and his Mirai botnet co-author.

On Nov. 28, 2017, 9gigs_ProxyPipe sent a message to the KrebsOnSecurity Twitter account:

“I have some information in regards to an incredibly dangerous IoT botnet you may find interesting,” the Twitter message read. “Let me know how you would prefer to communicate assuming you are interested.”

We connected on Jabber instant message. In our chats, Ogmemes123 said he couldn’t understand why nobody had noticed a botnet powered by a Mirai variant that had infected hundreds of thousands of IoT devices (he estimated the size of the botnet to be about 300,000-500,000 at the time). He also talked a lot about how close he was with Jha. Nexus Zeta’s Twitter account profile photo is a picture of Paras Jha. He also said he knew this new botnet was being used to attack ProxyPipe.

Less than 24 hours after that tweet from Nexus Zeta, I heard from ProxyPipe’s Coelho. They were under attack from a new Mirai variant. Continue reading

Instagram’s New Security Tools are a Welcome Step, But Not Enough

August 29, 2018

Instagram users should soon have more secure options for protecting their accounts against Internet bad guys.  On Tuesday, the Facebook-owned social network said it is in the process of rolling out support for third-party authentication apps. Unfortunately, this welcome new security offering does nothing to block Instagram account takeovers when thieves manage to hijack a target’s mobile phone number — an increasingly common crime.

New two-factor authentication options Instagram says it is rolling out to users over the next few weeks.

For years, security experts have warned that hackers are exploiting weak authentication at Instagram to commandeer accounts. Instagram has long offered users a security option to have a one-time code sent via text message to a mobile device, but these codes can be intercepted via several methods (more on that in a bit).

The new authentication offering requires users to download a third-party app like Authy, Duo or Google Authenticator, which generates a one-time code that needs to be entered after the user supplies a password.

In a blog post Tuesday, Instagram said support for third-party authenticator apps “has begun to roll out and will be available to the global community in the coming weeks.

Instagram put me on a whitelist of accounts to get an early peek at the new security feature, so these options probably aren’t yet available to most users. But there’s a screenshot below that shows the multi-factor options available in the mobile app. When these options do become more widely available, Instagram says people can use a third-party app to receive a one-time code. To do this:

  1. Go to your Settings.
  2. Scroll down and tap Two-Factor Authentication.
  3. If you haven’t already turned two-factor authentication on, tap Get Started.
  4. Tap next to Authentication App, then follow the on-screen instructions.
  5. Enter the confirmation code from the third party authentication app to complete the process.

Note that if you have previously enabled SMS-based authentication, it is likely still enabled unless and until you disable it. The app also prompts users to save a series of recovery codes, which should be kept in a safe place in case one’s mobile device is ever lost.

WHAT IT DOESN’T FIX

Instagram has received quite a lot of bad press lately from publications reporting numerous people who had their accounts hijacked even though they had Instagram’s SMS authentication turned on. The thing is, many of those stories have been about people having their Instagram accounts hijacked because fraudsters were able to hijack their mobile phone number.

In these cases, the fraudsters were able to hijack the Instagram accounts because Instagram allows users to reset their account passwords with a single factor — using nothing more than a text message sent to a mobile number on fileAnd nothing in these new authentication offerings will change that for people who have shared their mobile number with Instagram.

Criminals can and do exploit SMS-based password reset requests to hijack Instagram accounts by executing unauthorized “SIM swaps,” i.e., tricking the target’s mobile provider into transferring the phone number to a device or account they control and intercepting the password reset link sent via SMS. Once they hijack the target’s mobile number, they can then reset the password for the associated Instagram account.

I asked Instagram if there was any way for people who have supplied the company with their phone number to turn off SMS-based password reset requests. I received this response from their PR folks:

“I can confirm that disabling SMS two factor will not disable the ability to reset a password via SMS,” a spokesperson said via email. “We recommend that the community use a third-party app for authentication, in place of SMS authentication. We’ll continue to iterate and improve on this product to keep people safe on our platform.” Continue reading

Fiserv Flaw Exposed Customer Data at Hundreds of Banks

August 28, 2018

Fiserv, Inc., a major provider of technology services to financial institutions, just fixed a glaring weakness in its Web platform that exposed personal and financial details of countless customers across hundreds of bank Web sites, KrebsOnSecurity has learned.

Brookfield, Wisc.-based Fiserv [NASDAQ:FISV] is a Fortune 500 company with 24,000 employees and $5.7 billion in earnings last year. Its account and transaction processing systems power the Web sites for hundreds of financial institutions — mostly small community banks and credit unions. According to FedFis.com, Fiserv is by far the top bank core processor, with more than 37 percent market share.

Two weeks ago this author heard from security researcher Kristian Erik Hermansen, who said he’d discovered something curious while logged in to an account at a tiny local bank that uses Fiserv’s platform.

Hermansen had signed up to get email alerts any time a new transaction posted to his account, and he noticed the site assigned his alert a specific “event number.” Working on a hunch that these event numbers might be assigned sequentially and that other records might be available if requested directly, Hermansen requested the same page again but first edited the site’s code in his browser so that his event number was decremented by one digit.

In an instant, he could then view and edit alerts previously set up by another bank customer, and could see that customer’s email address, phone number and full bank account number.

Hermansen said a cybercriminal could abuse this access to enumerate all other accounts with activity alerts on file, and to add or delete phone numbers or email addresses to receive alerts about account transactions.

This would allow any customer of the bank to spy on the daily transaction activity of other customers, and perhaps even target customers who signed up for high minimum balance alerts (e.g., “alert me when the available balance goes below $5,000”).

“I shouldn’t be able to see this data,” Hermansen said. “Anytime you spend money that should be a private transaction between you and your bank, not available for everyone else to see.”

Hermansen said he told his bank about what he found, and that he tried unsuccessfully to get the attention of different Fiserv employees, including the company’s CEO via LinkedIn. But he wasn’t sure whether the flaw he found existed in all bank sites running on Fiserv’s ebanking platform, or just his bank’s installation.

Naturally, KrebsOnSecurity offered to help figure that out, and to get Fiserv’s attention, if warranted. Over the past week I signed up for accounts at two small local banks that each use Fiserv’s online banking platform.

In both cases I was able to replicate Hermansen’s findings and view email addresses, phone numbers, partial account numbers and alert details for other customers of each bank just by editing a single digit in a Web page request. I was relieved to find I could not use my online account access at one bank to view transaction alerts I’d set up at a different Fiserv affiliated bank.

A single digit changed in a Web browser request caused someone else’s alerts to pop up in my account at this small local bank in Virginia.

Continue reading

Who’s Behind the Screencam Extortion Scam?

August 25, 2018

The sextortion email scam last month that invoked a real password used by each recipient and threatened to release embarrassing Webcam videos almost certainly was not the work of one criminal or even one group of criminals. Rather, it’s likely that additional spammers and scammers piled on with their own versions of the phishing email after noticing that some recipients were actually paying up. The truth is we may never find out who’s responsible, but it’s still fun to follow some promising leads and see where they take us.

On August 7, 2018, a user on the forum of free email service hMailServer posted a copy of the sextortion email he received, noting that it included a password he’d formerly used online.

Helpfully, this user pasted a great deal of information from the spam email message, including the domain name from which it was sent (williehowell-dot-com) and the Internet address of the server that sent the message (46.161.42.91).

A look at the other domain names registered to this IP address block 46.161.42.x reveals some interesting patterns:

46.161.42.51 mail25.uscourtsgov[.]com
46.161.42.52 mail24.uscourtsgov[.]com
46.161.42.53 mail23.uscourtsgov[.]com
46.161.42.54 mail22.uscourtsgov[.]com
46.161.42.55 mail21.uscourtsgov[.]com
46.161.42.56 mail20.uscourtsgov[.]com
46.161.42.57 mail19.uscourtsgov[.]com
46.161.42.58 mail18.uscourtsgov[.]com
46.161.42.59 mail17.uscourtsgov[.]com
46.161.42.60 mail16.uscourtsgov[.]com
46.161.42.61 mail15.uscourtsgov[.]com
46.161.42.62 mail14.uscourtsgov[.]com
46.161.42.63 mail13.uscourtsgov[.]com
46.161.42.64 mail12.uscourtsgov[.]com
46.161.42.65 mail11.uscourtsgov[.]com
46.161.42.66 mail10.uscourtsgov[.]com
46.161.42.67 mail9.uscourtsgov[.]com
46.161.42.68 mail8.uscourtsgov[.]com
46.161.42.69 mail7.uscourtsgov[.]com
46.161.42.70 mail6.uscourtsgov[.]com
46.161.42.71 mail5.uscourtsgov[.]com
46.161.42.72 mail4.uscourtsgov[.]com
46.161.42.73 mail3.uscourtsgov[.]com
46.161.42.74 mail2.uscourtsgov[.]com
46.161.42.75 mail1.uscourtsgov[.]com
46.161.42.76 mail[.]commarysmith[.]com
46.161.42.77 mail.joancooper[.]com
46.161.42.78 mail.florencewoods[.]com
46.161.42.79 mail.ednawest[.]com
46.161.42.80 mail.ethelwebb[.]com
46.161.42.81 mail.eleanorhunt[.]com
46.161.42.82 mail.sallypierce[.]com
46.161.42.83 mail.reginaberry[.]com
46.161.42.84 mail.junecarroll[.]com
46.161.42.85 mail.robertaharper[.]com
46.161.42.86 mail.reneelane[.]com
46.161.42.87 mail.almaaustin[.]com
46.161.42.88 mail.elsiekelley[.]com
46.161.42.89 mail.vickifields[.]com
46.161.42.90 mail.ellaoliver[.]com
46.161.42.91 mail.williehowell[.]com
46.161.42.92 mail.veramccoy[.]com
46.161.42.93 mail.agnesbishop[.]com
46.161.42.94 mail.tanyagilbert[.]com
46.161.42.95 mail.mattiehoffman[.]com
46.161.42.96 mail.hildahopkins[.]com
46.161.42.97 beckymiles[.]com
46.161.42.98 mail.fayenorris[.]com
46.161.42.99 mail.joannaleonard[.]com
46.161.42.100 mail.rosieweber[.]com
46.161.42.101 mail.candicemanning[.]com
46.161.42.102 mail.sherirowe[.]com
46.161.42.103 mail.leticiagoodman[.]com
46.161.42.104 mail.myrafrancis[.]com
46.161.42.105 mail.jasminemaxwell[.]com
46.161.42.106 mail.eloisefrench[.]com

Search Google for any of those two-name domains above (e.g., fayenorris-dot-com) and you’ll see virtually all of them were used in these sextortion emails, and most were registered at the end of May 2018 through domain registrar Namecheap.

Notice the preponderance of the domain uscourtsgov-dot-com in the list above. All of those two-name domains used domain name servers (DNS servers) from uscourtsgov-dot-com at the time these emails were sent. In early June 2018, uscourtsgov-dot-com was associated with a Sigma ransomware scam delivered via spam. Victims who wanted their files back had to pay a bitcoin ransom.

In the months just before either the password-laced sextortion scam or the uscourtsgov-dot-com ransomware scam, uscourtsgov-com was devoid of content, aside from a message promoting the spamming services of the web site mtaexpert-dot-info. Uscourtsgov-dot-com is now offline, but it was active as of two weeks ago. Here’s what its homepage looked like:

The domain uscourtsgov-dot-com was redirecting visitors to mtaexpert-dot-info for many months up to and including the sextortion email campaign. Image: Domaintools.com

Interestingly, this same message promoting mtaexpert-dot-info appeared on the homepages of many other two-name domain names mentioned above (including fayenorris-dot-com):

Like uscourtsgov-dot-com, Fayenorris-dot-com also urged visitors to go to mtaexpert-dot-info.

Continue reading

Experts Urge Rapid Patching of ‘Struts’ Bug

August 23, 2018

In September 2017, Equifax disclosed that a failure to patch one of its Internet servers against a pervasive software flaw — in a Web component known as Apache Struts — led to a breach that exposed personal data on 147 million Americans. Now security experts are warning that blueprints showing malicious hackers how to exploit a newly-discovered Apache Struts bug are available online, leaving countless organizations in a rush to apply new updates and plug the security hole before attackers can use it to wriggle inside.

On Aug. 22, the Apache Software Foundation released software updates to fix a critical vulnerability in Apache Struts, a Web application platform used by an estimated 65 percent of Fortune 100 companies. Unfortunately, computer code that can be used to exploit the bug has since been posted online, meaning bad guys now have precise instructions on how to break into vulnerable, unpatched servers.

Attackers can exploit a Web site running the vulnerable Apache Struts installation using nothing more than a Web browser. The bad guy simply needs to send the right request to the site and the Web server will run any command of the attacker’s choosing. At that point, the intruder could take any number of actions, such as adding or deleting files, or copying internal databases.

An alert about the Apache security update was posted Wednesday by Semmle, the San Francisco software company whose researchers discovered the bug.

“The widespread use of Struts by leading enterprises, along with the proven potential impact of this sort of vulnerability, illustrate the threat that this vulnerability poses,” the alert warns.

“Critical remote code execution vulnerabilities like the one that affected Equifax and the one we announced today are incredibly dangerous for several reasons: Struts is used for publicly-accessible customer-facing websites, vulnerable systems are easily identified, and the flaw is easy to exploit,” wrote Semmle co-founder Pavel Avgustinov. “A hacker can find their way in within minutes, and exfiltrate data or stage further attacks from the compromised system. It’s crucially important to update affected systems immediately; to wait is to take an irresponsible risk.” Continue reading

Alleged SIM Swapper Arrested in California

August 22, 2018

Authorities in Santa Clara, Calif. have arrested and charged a 19-year-old area man on suspicion hijacking mobile phone numbers as part of a scheme to steal large sums of bitcoin and other cryptocurrencies. The arrest is the third known law enforcement action this month targeting “SIM swappers,” individuals who specialize in stealing wireless phone numbers and hijacking online financial and social media accounts tied to those numbers.

Xzavyer Clemente Narvaez was arrested Aug. 17, 2018 by investigators working with Santa Clara County’s “REACT task force,” which says it’s targeting those involved in “the takeovers of cell phone, email and financial accounts resulting in the theft of cryptocurrency.”

Prosecutors allege Narvaez used the proceeds of his crimes (estimated at > $1 million in virtual currencies) to purchase luxury items, including a McLaren — a $200,000 high-performance sports car. Investigators said they interviewed several alleged victims of Narvaez, including one man who reported being robbed of $150,000 in virtual currencies after his phone number was hijacked.

A fraudulent SIM swap occurs when a victim’s cell phone service is redirected from a SIM card under the control of the victim to one under the control of the suspect, without the knowledge or authorization of the victim account holder.

When a victim experiences a fraudulent SIM swap, their phone suddenly has no service and all incoming calls and text messages are sent to the attacker’s device. This includes any one-time codes sent via text message or automated phone call that many companies use to supplement passwords for their online accounts.

Narvaez came to law enforcement’s attention following the arrest of Joel Ortiz, a gifted 20-year-old college student from Boston who was charged in July 2018 with using SIM swaps to steal more than $5 million in cryptocurrencies from 40 victims.

A redacted “statement of facts” in the case obtained by KrebsOnSecurity says records obtained from Google revealed that a cellular device used by Ortiz to commit SIM swaps had at one point been used to access the Google account identified as Xzavyer.Narvaez@gmail.com.

That statement refers frequently to the term IMEI; this is the International Mobile Equipment Identity number, which is a unique identification number or serial number that all mobile phones and smartphones have.

Prosecutors used data gathered from a large number of tech companies to put Narvaez’s phone in specific places near his home in Tracy, Calif. at the time his alleged victims reported having their phones hijacked. His alleged re-use of the same mobile device for multiple SIM hijacks ultimately gave him away:

“On 7/18/18, investigators received information from an AT&T investigator regarding unauthorized SIM swaps conducted through an AT&T authorized retailer. He reported that approximately 28 SIM swaps were conducted using the same employee ID number over an approximately two-week time period in November 2017. Records were obtained that included a list of IMEI numbers used to take over the victims’ cell phone numbers.”

“AT&T provided call detail records pertaining to the IMEI numbers listed to conduct the SIM swaps. One of those IMEI numbers, ending in 3218, was used to take over the cell phone of a resident of Illinois. I contacted the victim who verified that some of his accounts had been “hacked” in late 2017 but said he did not suffer any financial loss. Sgt. Tarazi analyzed the AT&T location data pertaining to that account takeover. That data indicated that on 7/27/17, when the victim from Illinois lost access to his accounts, the IMEI (ending in 3218) of the cell phone controlling the victim’s cell phone number was located in Tracy, California.”

“The specific tower is located approximately 0.6 miles away from the address 360 Yosemite Drive in Tracy. Several “NELOS” records (GPS coordinates logged by AT&T to estimate the location of devices on their network) indicate the phone was within 1000 meters of 360 Yosemite Drive in Tracy. AT&T also provided call detail records pertaining to Narvaez’ cell phone account, which was linked to him through financial services account records. Sgt. Tarazi examined those records and determined that Narvaez’ own cell phone was connected to the same tower and sector during approximately the same time frame that the suspect device (ending in 3218) was connected to the victim’s account.”

Apple responded to requests with records pertaining to customer accounts linked to that same suspect IMEI number. Those records identified three California residents whose Apple accounts were linked to that same IMEI number. Continue reading

Indian Bank Hit in $13.5M Cyberheist After FBI ATM Cashout Warning

August 17, 2018

On Sunday, Aug. 12, KrebsOnSecurity carried an exclusive: The FBI was warning banks about an imminent “ATM cashout” scheme about to unfold across the globe, thanks to a data breach at an unknown financial institution. On Aug. 14, a bank in India disclosed hackers had broken into its servers, stealing nearly $2 million in fraudulent bank transfers and $11.5 million unauthorized ATM withdrawals from cash machines in more than two dozen countries.

The FBI put out its alert on Friday, Aug. 10. The criminals who hacked into Pune, India-based Cosmos Bank executed their two-pronged heist the following day, sending co-conspirators to fan out and withdraw a total of about $11.5 million from ATMs in 28 countries.

The FBI warned it had intelligence indicating that criminals had breached an unknown payment provider’s network with malware to access bank customer card information and exploit network access, enabling large scale theft of funds from ATMs.

Organized cybercrime gangs that coordinate these so-called “unlimited attacks” typically do so by hacking or phishing their way into a bank or payment card processor. Just prior to executing on ATM cashouts, the intruders will remove many fraud controls at the financial institution, such as maximum withdrawal amounts and any limits on the number of customer ATM transactions daily.

The perpetrators alter account balances and security measures to make an unlimited amount of money available at the time of the transactions, allowing for large amounts of cash to be quickly removed from the ATM.

My story about the FBI alert was breaking news on Sunday, but it was just a day short of useful to financial institutions impacted by the breach and associated ATM cashout blitz.

But according to Indian news outlet Dailypionneer.com, there was a second attack carried out on August 13, when the Cosmos Bank hackers transferred nearly $2 million to the account of ALM Trading Limited at Hang Seng Bank in Hong Kong.

“The bank came to know about the malware attack on its debit card payment system on August 11, when it was observed that unusually repeated transactions were taking place through ATM VISA and Rupay Card for nearly two hours,” writes TN Raghunatha for the Daily Pioneer. Continue reading